Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,850 Bytes
d0c9c37 d95c01c d0c9c37 ca86eff d0c9c37 33f6a35 d0c9c37 ca86eff d0c9c37 33f6a35 d0c9c37 ca86eff d0c9c37 ca86eff d0c9c37 ca86eff d0c9c37 33f6a35 ca86eff 33f6a35 ecddc77 ca86eff ecddc77 33f6a35 ecddc77 ca86eff ecddc77 ca86eff ecddc77 ca86eff ecddc77 b3302d2 33f6a35 ca86eff 33f6a35 221a8ba ca86eff 221a8ba 33f6a35 558c701 ca86eff 221a8ba ca86eff 221a8ba ca86eff 221a8ba ca86eff 221a8ba b3302d2 33f6a35 ca86eff 33f6a35 60d0ae5 ca86eff 60d0ae5 33f6a35 558c701 ca86eff 60d0ae5 ca86eff 60d0ae5 ca86eff 60d0ae5 ca86eff 60d0ae5 d0c9c37 ca86eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import spaces
import gradio as gr
from marker.markdown_extractor import MarkdownExtractorConfig, MarkdownExtractor
from pdf.pdf_extractor import PDFExtractorConfig, PDFExtractor
from gemini.gemini_extractor import GeminiExtractorConfig, GeminiExtractor
from oai.oai_extractor import OAIExtractorConfig, OAIExtractor
from indexify_extractor_sdk import Content
markdown_extractor = MarkdownExtractor()
pdf_extractor = PDFExtractor()
gemini_extractor = GeminiExtractor()
oai_extractor = OAIExtractor()
@spaces.GPU
def use_marker(pdf_filepath):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = MarkdownExtractorConfig(batch_multiplier=2)
result = markdown_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with Marker & Indexify") as marker_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file = gr.File(type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_marker, inputs=[pdf_file], outputs=[model_output_text_box])
@spaces.GPU
def use_pdf_extractor(pdf_filepath):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = PDFExtractorConfig(output_types=["text", "table"])
result = pdf_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with PDF Extractor & Indexify") as pdf_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file = gr.File(type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_pdf_extractor, inputs=[pdf_file], outputs=[model_output_text_box])
@spaces.GPU
def use_gemini(pdf_filepath, key):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = GeminiExtractorConfig(prompt="Extract all text from the document.", model_name="gemini-1.5-flash", key=key)
result = gemini_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with Gemini & Indexify") as gemini_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file = gr.File(type="filepath")
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
key = gr.Textbox(info="Please enter your GEMINI_API_KEY", label="Key:")
with gr.Column():
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_gemini, inputs=[pdf_file, key], outputs=[model_output_text_box])
@spaces.GPU
def use_openai(pdf_filepath, key):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = OAIExtractorConfig(prompt="Extract all text from the document.", model_name="gpt-4o", key=key)
result = oai_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with OpenAI & Indexify") as openai_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_openai.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file = gr.File(type="filepath")
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
key = gr.Textbox(info="Please enter your OPENAI_API_KEY", label="Key:")
with gr.Column():
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_openai, inputs=[pdf_file, key], outputs=[model_output_text_box])
demo = gr.TabbedInterface([marker_demo, pdf_demo, gemini_demo, openai_demo], ["Marker Extractor", "PDF Extractor", "Gemini Extractor", "OpenAI Extractor"], theme=gr.themes.Soft())
demo.queue()
demo.launch()
|