Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,842 Bytes
d0c9c37 d95c01c d0c9c37 ca86eff d0c9c37 33f6a35 d0c9c37 ca86eff d0c9c37 1bdb079 d0c9c37 ca86eff 1bdb079 d0c9c37 ca86eff d0c9c37 1bdb079 d0c9c37 33f6a35 ca86eff 33f6a35 ecddc77 ca86eff ecddc77 1bdb079 ecddc77 ca86eff 1bdb079 ecddc77 ca86eff ecddc77 1bdb079 ecddc77 1bdb079 d0c9c37 ca86eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import spaces
import gradio as gr
from marker.markdown_extractor import MarkdownExtractorConfig, MarkdownExtractor
from pdf.pdf_extractor import PDFExtractorConfig, PDFExtractor
from indexify_extractor_sdk import Content
markdown_extractor = MarkdownExtractor()
pdf_extractor = PDFExtractor()
@spaces.GPU
def use_marker(pdf_filepath):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = MarkdownExtractorConfig(batch_multiplier=2)
result = markdown_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with Marker & Indexify") as marker_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file_1 = gr.File(type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box_1 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_1")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_marker, inputs=[pdf_file_1], outputs=[model_output_text_box_1])
@spaces.GPU
def use_pdf_extractor(pdf_filepath):
if pdf_filepath is None:
raise gr.Error("Please provide some input PDF: upload a PDF file")
with open(pdf_filepath, "rb") as f:
pdf_data = f.read()
content = Content(content_type="application/pdf", data=pdf_data)
config = PDFExtractorConfig(output_types=["text", "table"])
result = pdf_extractor.extract(content, config)
return result
with gr.Blocks(title="PDF data extraction with PDF Extractor & Indexify") as pdf_demo:
gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>")
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
with gr.Row():
with gr.Column():
gr.HTML(
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
"You can extract from PDF files continuously and try various other extractors locally with "
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
)
pdf_file_2 = gr.File(type="filepath")
with gr.Column():
gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
go_button = gr.Button(value="Run extractor", variant="primary")
model_output_text_box_2 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_2")
with gr.Row():
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
go_button.click(fn=use_pdf_extractor, inputs=[pdf_file_2], outputs=[model_output_text_box_2])
demo = gr.TabbedInterface([marker_demo, pdf_demo], ["Marker Extractor", "PDF Extractor"], theme=gr.themes.Soft())
demo.queue()
demo.launch()
|