File size: 4,842 Bytes
d0c9c37
 
d95c01c
 
d0c9c37
 
 
 
 
 
 
 
ca86eff
d0c9c37
 
 
 
 
33f6a35
d0c9c37
 
 
 
 
ca86eff
d0c9c37
 
 
 
 
 
 
 
 
1bdb079
d0c9c37
 
ca86eff
1bdb079
d0c9c37
 
ca86eff
d0c9c37
1bdb079
d0c9c37
33f6a35
 
 
ca86eff
33f6a35
 
 
 
 
 
 
ecddc77
 
 
 
ca86eff
ecddc77
 
 
 
 
 
 
 
 
1bdb079
ecddc77
 
ca86eff
1bdb079
ecddc77
 
ca86eff
ecddc77
1bdb079
ecddc77
1bdb079
d0c9c37
 
ca86eff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import spaces
import gradio as gr
from marker.markdown_extractor import MarkdownExtractorConfig, MarkdownExtractor
from pdf.pdf_extractor import PDFExtractorConfig, PDFExtractor
from indexify_extractor_sdk import Content

markdown_extractor = MarkdownExtractor()
pdf_extractor = PDFExtractor()

@spaces.GPU
def use_marker(pdf_filepath):
	if pdf_filepath is None:
		raise gr.Error("Please provide some input PDF: upload a PDF file")
	with open(pdf_filepath, "rb") as f:
		pdf_data = f.read()
	content = Content(content_type="application/pdf", data=pdf_data)
	config = MarkdownExtractorConfig(batch_multiplier=2)
	result = markdown_extractor.extract(content, config)
	return result

with gr.Blocks(title="PDF data extraction with Marker & Indexify") as marker_demo:
	gr.HTML("<h1 style='text-align: center'>PDF data extraction with Marker & <a href='https://getindexify.ai/'>Indexify</a></h1>")
	gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
	gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
	gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/efficient_rag.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")

	with gr.Row():
		with gr.Column():
			gr.HTML(
				"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
				"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
				"You can extract from PDF files continuously and try various other extractors locally with "
				"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
			)
			pdf_file_1 = gr.File(type="filepath")
		with gr.Column():
			gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
			go_button = gr.Button(value="Run extractor", variant="primary")
			model_output_text_box_1 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_1")

	with gr.Row():
		gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")

	go_button.click(fn=use_marker, inputs=[pdf_file_1], outputs=[model_output_text_box_1])

@spaces.GPU
def use_pdf_extractor(pdf_filepath):
	if pdf_filepath is None:
		raise gr.Error("Please provide some input PDF: upload a PDF file")
	with open(pdf_filepath, "rb") as f:
		pdf_data = f.read()
	content = Content(content_type="application/pdf", data=pdf_data)
	config = PDFExtractorConfig(output_types=["text", "table"])
	result = pdf_extractor.extract(content, config)
	return result

with gr.Blocks(title="PDF data extraction with PDF Extractor & Indexify") as pdf_demo:
	gr.HTML("<h1 style='text-align: center'>PDF data extraction with PDF Extractor & <a href='https://getindexify.ai/'>Indexify</a></h1>")
	gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
	gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
	gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/SEC_10_K_docs.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")

	with gr.Row():
		with gr.Column():
			gr.HTML(
				"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
				"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
				"You can extract from PDF files continuously and try various other extractors locally with "
				"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
			)
			pdf_file_2 = gr.File(type="filepath")
		with gr.Column():
			gr.HTML("<p><b>Step 2:</b> Run the extractor.</p>")
			go_button = gr.Button(value="Run extractor", variant="primary")
			model_output_text_box_2 = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box_2")

	with gr.Row():
		gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")

	go_button.click(fn=use_pdf_extractor, inputs=[pdf_file_2], outputs=[model_output_text_box_2])

demo = gr.TabbedInterface([marker_demo, pdf_demo], ["Marker Extractor", "PDF Extractor"], theme=gr.themes.Soft())

demo.queue()
demo.launch()