File size: 3,951 Bytes
89b078e
138ee9c
9d2b048
df5d2d4
8d0bba0
89b078e
 
9d2b048
89b078e
9d2b048
89b078e
3f75f59
604231c
9d2b048
 
 
 
89b078e
 
 
 
 
7c3d441
def4cb3
89b078e
 
 
 
 
df5d2d4
89b078e
ade57f6
89b078e
 
 
 
 
dcef7e3
89b078e
 
138ee9c
89b078e
 
 
 
 
 
 
 
 
a01fcf4
d4a3868
 
c76caf9
 
 
5e0aea9
df0a789
023ef49
89b078e
9d2b048
 
 
 
0798764
 
aa86aaf
89b078e
 
df5d2d4
0798764
2551ef0
 
a01fcf4
aa86aaf
2551ef0
 
 
 
 
 
 
 
 
 
aa86aaf
2551ef0
 
 
dcef7e3
89b078e
 
ac669c3
89b078e
e5255a2
aa86aaf
 
18fbbc3
aa86aaf
 
 
 
 
 
 
 
 
 
 
 
 
138ee9c
ab5d546
a01fcf4
89b078e
 
 
 
 
dcad378
89b078e
 
48266b9
89b078e
 
9d2b048
 
47cbb99
9d2b048
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
import time
from transformers import pipeline

from pytube import YouTube
from pydub import AudioSegment
from audio_extract import extract_audio
import google.generativeai as google_genai
import os
from dotenv import load_dotenv



load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
google_genai.configure(api_key=GOOGLE_API_KEY)

st.set_page_config(
    page_title="VidText"
)

def youtube_video_downloader(url):
    yt_vid = YouTube(url)
    title = yt_vid.title
    vid_dld = (
        yt_vid.streams.filter(progressive=True, file_extension="mp4")
        .order_by("resolution")
        .desc()
        .first()    
    )
    vid_dld = vid_dld.download()
    return vid_dld, title


def audio_extraction(video_file, output_format):
    audio = extract_audio(
        input_path=os.fspath(video_file), output_path=f"{str(video_file)[:-4]}.mp3", output_format=f"{output_format}"
    )
    return audio
  

def audio_processing(mp3_audio):
    audio = AudioSegment.from_file(mp3_audio, format="mp3")
    wav_file = "audio_file.wav"
    audio = audio.export(wav_file, format="wav")
    return wav_file


@st.cache_resource
def load_asr_model():
    asr_model = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3")
    return asr_model

transcriber_model = load_asr_model()

def transcriber_pass(processed_audio):
    text_extract = transcriber_model(processed_audio)
    return text_extract['text']

def generate_ai_summary(transcript):
    model = google_genai.GenerativeModel('gemini-pro')
    model_response = model.generate_content([f"Give a summary of the text {transcript}"], stream=True)
    return model_response.text

    

# Streamlit UI

 file_select_tab, audio_file_tab = st.tabs([ "Video file", "Audio file"])

# with youtube_url_tab:
#     url = st.text_input("Enter the Youtube url")
    

#     yt_video, title = youtube_video_downloader(url)
#     if url:
#        if st.button("Transcribe", key="yturl"):
#            with st.spinner("Transcribing..."):
#                audio = audio_extraction(yt_video, "mp3")
#                audio = audio_processing(audio)
#                ytvideo_transcript = transcriber_pass(audio)
#            st.success(f"Transcription successful")
#            st.write(ytvideo_transcript)
#            # st.write(f'Completed in {run_time}')
           
#            if st.button("Generate Summary"):
#               summary = generate_ai_summary(ytvideo_transcript)
#               st.write(summary)


# Video file transcription

with file_select_tab:
    uploaded_video_file = st.file_uploader("Upload video file", type="mp4")
    

    if uploaded_video_file:
        video_file = uploaded_video_file.read()
        
        if st.button("Transcribe", key="vidfile"):
            with st.spinner("Transcribing..."):
                audio = audio_extraction(os.fspath(video_file), "mp3")
                audio = audio_processing(audio)
                video_transcript = transcriber_pass(audio)
                st.success(f"Transcription successful")
                st.write(video_transcript)
               
                if st.button("Generate Summary", key="ti2"):
                    summary = generate_ai_summary(video_transcript)
                    st.write(summary)
                       

        
# Audio transcription
with audio_file_tab:
    audio_file = st.file_uploader("Upload audio file", type="mp3")  

    if audio_file:
        if st.button("Transcribe", key="audiofile"):
            with st.spinner("Transcribing..."):
                processed_audio = audio_processing(audio_file)
                audio_transcript = transcriber_pass(processed_audio)
                st.success(f"Transcription successful")
                st.write(audio_transcript)


                if st.button("Generate Summary", key="ti1"):
                    summary = generate_ai_summary(audio_transcript)
                    st.write(summary)