akhaliq HF Staff commited on
Commit
780dd05
·
1 Parent(s): d32befa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -57,7 +57,7 @@ def load_image(image_url, image_size=256, dynamic_size=False, max_dynamic_size=5
57
  image_size = 224
58
  dynamic_size = False
59
 
60
- model_name = "efficientnetv2-s"
61
 
62
  model_handle_map = {
63
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
@@ -214,5 +214,9 @@ def inference(img):
214
  line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}'
215
  result[classes[class_index]] = probabilities[0][top_5][i].item()
216
  return result
217
-
218
- gr.Interface(inference,gr.inputs.Image(type="filepath"),"label").launch()
 
 
 
 
 
57
  image_size = 224
58
  dynamic_size = False
59
 
60
+ model_name = "efficientnetv2-b0"
61
 
62
  model_handle_map = {
63
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
 
214
  line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}'
215
  result[classes[class_index]] = probabilities[0][top_5][i].item()
216
  return result
217
+
218
+ title="efficientnet_v2_imagenet1k_b0"
219
+ description="Gradio Demo for efficientnet_v2_imagenet1k_b0: Imagenet (ILSVRC-2012-CLS) classification with EfficientNet V2 with input size 224x224. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
220
+ article = "<p style='text-align: center'><a href='https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/classification/2' target='_blank'>Tensorflow Hub</a></p>"
221
+ examples=[['turtle.jpeg']]
222
+ gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)