|
import tensorflow as tf |
|
import tensorflow_hub as hub |
|
|
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import gradio as gr |
|
|
|
|
|
image_size = 224 |
|
dynamic_size = False |
|
|
|
model_name = "efficientnetv2-s" |
|
|
|
model_handle_map = { |
|
"efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2", |
|
"efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/classification/2", |
|
"efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/classification/2", |
|
"efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/classification/2", |
|
"efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/classification/2", |
|
"efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/classification/2", |
|
"efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/classification/2", |
|
"efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/classification/2", |
|
"efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/classification/2", |
|
"efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/classification/2", |
|
"efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/classification/2", |
|
"efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/classification/2", |
|
"efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/classification/2", |
|
"efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/classification/2", |
|
"efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/classification/2", |
|
"efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/classification/2", |
|
"efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/classification/2", |
|
"efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/classification/2", |
|
"efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/classification/2", |
|
"efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/classification/2", |
|
"efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/classification/2", |
|
"efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/classification/2", |
|
"efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/classification/2", |
|
"efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/classification/1", |
|
"efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/classification/1", |
|
"efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/classification/1", |
|
"efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/classification/1", |
|
"efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/classification/1", |
|
"efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/classification/1", |
|
"efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/classification/1", |
|
"efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/classification/1", |
|
"bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/ilsvrc2012_classification/1", |
|
"inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/classification/4", |
|
"inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/classification/4", |
|
"resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/classification/4", |
|
"resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/classification/4", |
|
"resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/classification/4", |
|
"resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4", |
|
"resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4", |
|
"resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4", |
|
"nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/classification/4", |
|
"nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/classification/4", |
|
"pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/classification/4", |
|
"mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4", |
|
"mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/classification/4", |
|
"mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/classification/4", |
|
"mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/classification/5", |
|
"mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/classification/5", |
|
"mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/classification/5", |
|
"mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5", |
|
} |
|
|
|
model_image_size_map = { |
|
"efficientnetv2-s": 384, |
|
"efficientnetv2-m": 480, |
|
"efficientnetv2-l": 480, |
|
"efficientnetv2-b0": 224, |
|
"efficientnetv2-b1": 240, |
|
"efficientnetv2-b2": 260, |
|
"efficientnetv2-b3": 300, |
|
"efficientnetv2-s-21k": 384, |
|
"efficientnetv2-m-21k": 480, |
|
"efficientnetv2-l-21k": 480, |
|
"efficientnetv2-xl-21k": 512, |
|
"efficientnetv2-b0-21k": 224, |
|
"efficientnetv2-b1-21k": 240, |
|
"efficientnetv2-b2-21k": 260, |
|
"efficientnetv2-b3-21k": 300, |
|
"efficientnetv2-s-21k-ft1k": 384, |
|
"efficientnetv2-m-21k-ft1k": 480, |
|
"efficientnetv2-l-21k-ft1k": 480, |
|
"efficientnetv2-xl-21k-ft1k": 512, |
|
"efficientnetv2-b0-21k-ft1k": 224, |
|
"efficientnetv2-b1-21k-ft1k": 240, |
|
"efficientnetv2-b2-21k-ft1k": 260, |
|
"efficientnetv2-b3-21k-ft1k": 300, |
|
"efficientnet_b0": 224, |
|
"efficientnet_b1": 240, |
|
"efficientnet_b2": 260, |
|
"efficientnet_b3": 300, |
|
"efficientnet_b4": 380, |
|
"efficientnet_b5": 456, |
|
"efficientnet_b6": 528, |
|
"efficientnet_b7": 600, |
|
"inception_v3": 299, |
|
"inception_resnet_v2": 299, |
|
"mobilenet_v2_100_224": 224, |
|
"mobilenet_v2_130_224": 224, |
|
"mobilenet_v2_140_224": 224, |
|
"nasnet_large": 331, |
|
"nasnet_mobile": 224, |
|
"pnasnet_large": 331, |
|
"resnet_v1_50": 224, |
|
"resnet_v1_101": 224, |
|
"resnet_v1_152": 224, |
|
"resnet_v2_50": 224, |
|
"resnet_v2_101": 224, |
|
"resnet_v2_152": 224, |
|
"mobilenet_v3_small_100_224": 224, |
|
"mobilenet_v3_small_075_224": 224, |
|
"mobilenet_v3_large_100_224": 224, |
|
"mobilenet_v3_large_075_224": 224, |
|
} |
|
|
|
model_handle = model_handle_map[model_name] |
|
|
|
|
|
max_dynamic_size = 512 |
|
if model_name in model_image_size_map: |
|
image_size = model_image_size_map[model_name] |
|
dynamic_size = False |
|
print(f"Images will be converted to {image_size}x{image_size}") |
|
else: |
|
dynamic_size = True |
|
print(f"Images will be capped to a max size of {max_dynamic_size}x{max_dynamic_size}") |
|
|
|
labels_file = "https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt" |
|
|
|
|
|
downloaded_file = tf.keras.utils.get_file("labels.txt", origin=labels_file) |
|
|
|
classes = [] |
|
|
|
with open(downloaded_file) as f: |
|
labels = f.readlines() |
|
classes = [l.strip() for l in labels] |
|
|
|
|
|
classifier = hub.load(model_handle) |
|
|
|
|
|
def inference(img): |
|
image, original_image = load_image(img, image_size, dynamic_size, max_dynamic_size) |
|
|
|
|
|
input_shape = image.shape |
|
warmup_input = tf.random.uniform(input_shape, 0, 1.0) |
|
warmup_logits = classifier(warmup_input).numpy() |
|
|
|
|
|
probabilities = tf.nn.softmax(classifier(image)).numpy() |
|
|
|
top_5 = tf.argsort(probabilities, axis=-1, direction="DESCENDING")[0][:5].numpy() |
|
np_classes = np.array(classes) |
|
|
|
|
|
|
|
includes_background_class = probabilities.shape[1] == 1001 |
|
|
|
for i, item in enumerate(top_5): |
|
class_index = item if includes_background_class else item + 1 |
|
line = f'({i+1}) {class_index:4} - {classes[class_index]}: {probabilities[0][top_5][i]}' |
|
|
|
return line |
|
|
|
gr.Interface(inference,"image","text").launch() |