Spaces:
Running
on
L40S
Running
on
L40S
update single track diffusion
Browse files- app.py +10 -3
- codeclm/models/codeclm.py +7 -1
- generate.py +5 -4
- generate.sh +2 -1
- generate_lowmem.py +3 -2
- generate_lowmem.sh +2 -1
- levo_inference.py +3 -3
- tools/gradio/app.py +11 -4
- tools/gradio/levo_inference.py +3 -6
- tools/gradio/levo_inference_lowmem.py +3 -6
app.py
CHANGED
@@ -56,7 +56,7 @@ with open(op.join(APP_DIR, 'conf/vocab.yaml'), 'r', encoding='utf-8') as file:
|
|
56 |
|
57 |
|
58 |
# 模拟歌曲生成函数
|
59 |
-
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, progress=gr.Progress(track_tqdm=True)):
|
60 |
global MODEL
|
61 |
global STRUCTS
|
62 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
@@ -105,7 +105,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
105 |
progress(0.0, "Start Generation")
|
106 |
start = time.time()
|
107 |
|
108 |
-
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), params).cpu().permute(1, 0).float().numpy()
|
109 |
|
110 |
end = time.time()
|
111 |
|
@@ -204,7 +204,9 @@ lyrics
|
|
204 |
interactive=True,
|
205 |
elem_id="top_k",
|
206 |
)
|
207 |
-
|
|
|
|
|
208 |
|
209 |
with gr.Column():
|
210 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
@@ -235,6 +237,11 @@ lyrics
|
|
235 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
236 |
outputs=[output_audio, output_json]
|
237 |
)
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
|
240 |
# 启动应用
|
|
|
56 |
|
57 |
|
58 |
# 模拟歌曲生成函数
|
59 |
+
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, gen_type="all", progress=gr.Progress(track_tqdm=True)):
|
60 |
global MODEL
|
61 |
global STRUCTS
|
62 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
|
105 |
progress(0.0, "Start Generation")
|
106 |
start = time.time()
|
107 |
|
108 |
+
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
|
109 |
|
110 |
end = time.time()
|
111 |
|
|
|
204 |
interactive=True,
|
205 |
elem_id="top_k",
|
206 |
)
|
207 |
+
with gr.Row():
|
208 |
+
generate_btn = gr.Button("Generate Song", variant="primary")
|
209 |
+
generate_bgm_btn = gr.Button("Generate Pure Music", variant="primary")
|
210 |
|
211 |
with gr.Column():
|
212 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
|
237 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
238 |
outputs=[output_audio, output_json]
|
239 |
)
|
240 |
+
generate_bgm_btn.click(
|
241 |
+
fn=generate_song,
|
242 |
+
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k, gr.State("bgm")],
|
243 |
+
outputs=[output_audio, output_json]
|
244 |
+
)
|
245 |
|
246 |
|
247 |
# 启动应用
|
codeclm/models/codeclm.py
CHANGED
@@ -271,13 +271,19 @@ class CodecLM:
|
|
271 |
return gen_tokens
|
272 |
|
273 |
@torch.no_grad()
|
274 |
-
def generate_audio(self, gen_tokens: torch.Tensor, prompt=None, vocal_prompt=None, bgm_prompt=None, chunked=False):
|
275 |
"""Generate Audio from tokens"""
|
276 |
assert gen_tokens.dim() == 3
|
277 |
if self.seperate_tokenizer is not None:
|
278 |
gen_tokens_song = gen_tokens[:, [0], :]
|
279 |
gen_tokens_vocal = gen_tokens[:, [1], :]
|
280 |
gen_tokens_bgm = gen_tokens[:, [2], :]
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
# gen_audio_song = self.audiotokenizer.decode(gen_tokens_song, prompt)
|
282 |
gen_audio_seperate = self.seperate_tokenizer.decode([gen_tokens_vocal, gen_tokens_bgm], vocal_prompt, bgm_prompt, chunked=chunked)
|
283 |
return gen_audio_seperate
|
|
|
271 |
return gen_tokens
|
272 |
|
273 |
@torch.no_grad()
|
274 |
+
def generate_audio(self, gen_tokens: torch.Tensor, prompt=None, vocal_prompt=None, bgm_prompt=None, chunked=False, gen_type="all"):
|
275 |
"""Generate Audio from tokens"""
|
276 |
assert gen_tokens.dim() == 3
|
277 |
if self.seperate_tokenizer is not None:
|
278 |
gen_tokens_song = gen_tokens[:, [0], :]
|
279 |
gen_tokens_vocal = gen_tokens[:, [1], :]
|
280 |
gen_tokens_bgm = gen_tokens[:, [2], :]
|
281 |
+
if gen_type == "bgm":
|
282 |
+
gen_tokens_vocal = torch.full_like(gen_tokens_vocal, 3142)
|
283 |
+
vocal_prompt = None
|
284 |
+
elif gen_type == "vocal":
|
285 |
+
gen_tokens_bgm = torch.full_like(gen_tokens_bgm, 9670)
|
286 |
+
bgm_prompt = None
|
287 |
# gen_audio_song = self.audiotokenizer.decode(gen_tokens_song, prompt)
|
288 |
gen_audio_seperate = self.seperate_tokenizer.decode([gen_tokens_vocal, gen_tokens_bgm], vocal_prompt, bgm_prompt, chunked=chunked)
|
289 |
return gen_audio_seperate
|
generate.py
CHANGED
@@ -70,6 +70,7 @@ if __name__ == "__main__":
|
|
70 |
ckpt_path = sys.argv[1]
|
71 |
input_jsonl = sys.argv[2]
|
72 |
save_dir = sys.argv[3]
|
|
|
73 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
74 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
75 |
cfg = OmegaConf.load(cfg_path)
|
@@ -146,15 +147,15 @@ if __name__ == "__main__":
|
|
146 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
147 |
tokens = model.generate(**generate_inp, return_tokens=True)
|
148 |
mid_time = time.time()
|
149 |
-
|
150 |
with torch.no_grad():
|
151 |
if melody_is_wav:
|
152 |
-
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
153 |
else:
|
154 |
-
wav_seperate = model.generate_audio(tokens)
|
155 |
end_time = time.time()
|
156 |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
|
157 |
-
print(f"process{item['idx']}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
|
158 |
|
159 |
item["idx"] = f"{item['idx']}"
|
160 |
item["wav_path"] = target_wav_name
|
|
|
70 |
ckpt_path = sys.argv[1]
|
71 |
input_jsonl = sys.argv[2]
|
72 |
save_dir = sys.argv[3]
|
73 |
+
gen_type = sys.argv[4] if len(sys.argv) > 4 else "all"
|
74 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
75 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
76 |
cfg = OmegaConf.load(cfg_path)
|
|
|
147 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
148 |
tokens = model.generate(**generate_inp, return_tokens=True)
|
149 |
mid_time = time.time()
|
150 |
+
|
151 |
with torch.no_grad():
|
152 |
if melody_is_wav:
|
153 |
+
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
154 |
else:
|
155 |
+
wav_seperate = model.generate_audio(tokens, gen_type=gen_type)
|
156 |
end_time = time.time()
|
157 |
torchaudio.save(target_wav_name, wav_seperate[0].cpu().float(), cfg.sample_rate)
|
158 |
+
print(f"process{item['idx']} {gen_type}, lm cost {mid_time - start_time}s, diffusion cost {end_time - mid_time}")
|
159 |
|
160 |
item["idx"] = f"{item['idx']}"
|
161 |
item["wav_path"] = target_wav_name
|
generate.sh
CHANGED
@@ -7,4 +7,5 @@ export PYTHONPATH="$(pwd)/codeclm/tokenizer/":"$(pwd)":"$(pwd)/codeclm/tokenizer
|
|
7 |
CKPT_PATH=$1
|
8 |
JSONL=$2
|
9 |
SAVE_DIR=$3
|
10 |
-
|
|
|
|
7 |
CKPT_PATH=$1
|
8 |
JSONL=$2
|
9 |
SAVE_DIR=$3
|
10 |
+
GEN_TYEP=$4
|
11 |
+
python3 generate.py $CKPT_PATH $JSONL $SAVE_DIR $GEN_TYEP
|
generate_lowmem.py
CHANGED
@@ -71,6 +71,7 @@ if __name__ == "__main__":
|
|
71 |
ckpt_path = sys.argv[1]
|
72 |
input_jsonl = sys.argv[2]
|
73 |
save_dir = sys.argv[3]
|
|
|
74 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
75 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
76 |
cfg = OmegaConf.load(cfg_path)
|
@@ -220,12 +221,12 @@ if __name__ == "__main__":
|
|
220 |
for item in new_items:
|
221 |
with torch.no_grad():
|
222 |
if 'raw_pmt_wav' in item:
|
223 |
-
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True)
|
224 |
del item['raw_pmt_wav']
|
225 |
del item['raw_vocal_wav']
|
226 |
del item['raw_bgm_wav']
|
227 |
else:
|
228 |
-
wav_seperate = model.generate_audio(item['tokens'], chunked=True)
|
229 |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
|
230 |
del item['tokens']
|
231 |
del item['pmt_wav']
|
|
|
71 |
ckpt_path = sys.argv[1]
|
72 |
input_jsonl = sys.argv[2]
|
73 |
save_dir = sys.argv[3]
|
74 |
+
gen_type = sys.argv[4] if len(sys.argv) > 4 else "all"
|
75 |
cfg_path = os.path.join(ckpt_path, 'config.yaml')
|
76 |
ckpt_path = os.path.join(ckpt_path, 'model.pt')
|
77 |
cfg = OmegaConf.load(cfg_path)
|
|
|
221 |
for item in new_items:
|
222 |
with torch.no_grad():
|
223 |
if 'raw_pmt_wav' in item:
|
224 |
+
wav_seperate = model.generate_audio(item['tokens'], item['raw_pmt_wav'], item['raw_vocal_wav'], item['raw_bgm_wav'], chunked=True, gen_type=gen_type)
|
225 |
del item['raw_pmt_wav']
|
226 |
del item['raw_vocal_wav']
|
227 |
del item['raw_bgm_wav']
|
228 |
else:
|
229 |
+
wav_seperate = model.generate_audio(item['tokens'], chunked=True, gen_type=gen_type)
|
230 |
torchaudio.save(item['wav_path'], wav_seperate[0].cpu().float(), cfg.sample_rate)
|
231 |
del item['tokens']
|
232 |
del item['pmt_wav']
|
generate_lowmem.sh
CHANGED
@@ -7,4 +7,5 @@ export PYTHONPATH="$(pwd)/codeclm/tokenizer/":"$(pwd)":"$(pwd)/codeclm/tokenizer
|
|
7 |
CKPT_PATH=$1
|
8 |
JSONL=$2
|
9 |
SAVE_DIR=$3
|
10 |
-
|
|
|
|
7 |
CKPT_PATH=$1
|
8 |
JSONL=$2
|
9 |
SAVE_DIR=$3
|
10 |
+
GEN_TYEP=$4
|
11 |
+
python3 generate_lowmem.py $CKPT_PATH $JSONL $SAVE_DIR $GEN_TYEP
|
levo_inference.py
CHANGED
@@ -67,7 +67,7 @@ class LeVoInference(torch.nn.Module):
|
|
67 |
|
68 |
self.model.set_generation_params(**self.default_params)
|
69 |
|
70 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
71 |
params = {**self.default_params, **params}
|
72 |
self.model.set_generation_params(**params)
|
73 |
|
@@ -105,8 +105,8 @@ class LeVoInference(torch.nn.Module):
|
|
105 |
|
106 |
with torch.no_grad():
|
107 |
if melody_is_wav:
|
108 |
-
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
109 |
else:
|
110 |
-
wav_seperate = self.model.generate_audio(tokens)
|
111 |
|
112 |
return wav_seperate[0]
|
|
|
67 |
|
68 |
self.model.set_generation_params(**self.default_params)
|
69 |
|
70 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
71 |
params = {**self.default_params, **params}
|
72 |
self.model.set_generation_params(**params)
|
73 |
|
|
|
105 |
|
106 |
with torch.no_grad():
|
107 |
if melody_is_wav:
|
108 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
109 |
else:
|
110 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
111 |
|
112 |
return wav_seperate[0]
|
tools/gradio/app.py
CHANGED
@@ -49,7 +49,7 @@ with open(op.join(APP_DIR, 'conf/vocab.yaml'), 'r', encoding='utf-8') as file:
|
|
49 |
STRUCTS = yaml.safe_load(file)
|
50 |
|
51 |
|
52 |
-
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, progress=gr.Progress(track_tqdm=True)):
|
53 |
global MODEL
|
54 |
global STRUCTS
|
55 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
@@ -98,7 +98,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
98 |
progress(0.0, "Start Generation")
|
99 |
start = time.time()
|
100 |
|
101 |
-
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), params).cpu().permute(1, 0).float().numpy()
|
102 |
|
103 |
end = time.time()
|
104 |
|
@@ -119,7 +119,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
|
|
119 |
# 创建Gradio界面
|
120 |
with gr.Blocks(title="SongGeneration Demo Space") as demo:
|
121 |
gr.Markdown("# 🎵 SongGeneration Demo Space")
|
122 |
-
gr.Markdown("Demo interface for the song generation model. Provide a lyrics, and optionally an audio or text prompt, to generate a custom song.")
|
123 |
|
124 |
with gr.Row():
|
125 |
with gr.Column():
|
@@ -197,7 +197,9 @@ lyrics
|
|
197 |
interactive=True,
|
198 |
elem_id="top_k",
|
199 |
)
|
200 |
-
|
|
|
|
|
201 |
|
202 |
with gr.Column():
|
203 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
@@ -228,6 +230,11 @@ lyrics
|
|
228 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
229 |
outputs=[output_audio, output_json]
|
230 |
)
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
|
233 |
# 启动应用
|
|
|
49 |
STRUCTS = yaml.safe_load(file)
|
50 |
|
51 |
|
52 |
+
def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_coef=None, temperature=None, top_k=None, gen_type="all", progress=gr.Progress(track_tqdm=True)):
|
53 |
global MODEL
|
54 |
global STRUCTS
|
55 |
params = {'cfg_coef':cfg_coef, 'temperature':temperature, 'top_k':top_k}
|
|
|
98 |
progress(0.0, "Start Generation")
|
99 |
start = time.time()
|
100 |
|
101 |
+
audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
|
102 |
|
103 |
end = time.time()
|
104 |
|
|
|
119 |
# 创建Gradio界面
|
120 |
with gr.Blocks(title="SongGeneration Demo Space") as demo:
|
121 |
gr.Markdown("# 🎵 SongGeneration Demo Space")
|
122 |
+
gr.Markdown("Demo interface for the song generation model. Provide a lyrics, and optionally an audio or text prompt, to generate a custom song. The code is in [GIT](https://github.com/tencent-ailab/SongGeneration)")
|
123 |
|
124 |
with gr.Row():
|
125 |
with gr.Column():
|
|
|
197 |
interactive=True,
|
198 |
elem_id="top_k",
|
199 |
)
|
200 |
+
with gr.Row():
|
201 |
+
generate_btn = gr.Button("Generate Song", variant="primary")
|
202 |
+
generate_bgm_btn = gr.Button("Generate Pure Music", variant="primary")
|
203 |
|
204 |
with gr.Column():
|
205 |
output_audio = gr.Audio(label="Generated Song", type="numpy")
|
|
|
230 |
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k],
|
231 |
outputs=[output_audio, output_json]
|
232 |
)
|
233 |
+
generate_bgm_btn.click(
|
234 |
+
fn=generate_song,
|
235 |
+
inputs=[lyric, description, prompt_audio, genre, cfg_coef, temperature, top_k, gr.State("bgm")],
|
236 |
+
outputs=[output_audio, output_json]
|
237 |
+
)
|
238 |
|
239 |
|
240 |
# 启动应用
|
tools/gradio/levo_inference.py
CHANGED
@@ -62,7 +62,7 @@ class LeVoInference(torch.nn.Module):
|
|
62 |
|
63 |
self.model.set_generation_params(**self.default_params)
|
64 |
|
65 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
66 |
params = {**self.default_params, **params}
|
67 |
self.model.set_generation_params(**params)
|
68 |
|
@@ -97,14 +97,11 @@ class LeVoInference(torch.nn.Module):
|
|
97 |
|
98 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
99 |
tokens = self.model.generate(**generate_inp, return_tokens=True)
|
100 |
-
|
101 |
-
if tokens.shape[-1] > 3000:
|
102 |
-
tokens = tokens[..., :3000]
|
103 |
|
104 |
with torch.no_grad():
|
105 |
if melody_is_wav:
|
106 |
-
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
107 |
else:
|
108 |
-
wav_seperate = self.model.generate_audio(tokens)
|
109 |
|
110 |
return wav_seperate[0]
|
|
|
62 |
|
63 |
self.model.set_generation_params(**self.default_params)
|
64 |
|
65 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
66 |
params = {**self.default_params, **params}
|
67 |
self.model.set_generation_params(**params)
|
68 |
|
|
|
97 |
|
98 |
with torch.autocast(device_type="cuda", dtype=torch.float16):
|
99 |
tokens = self.model.generate(**generate_inp, return_tokens=True)
|
|
|
|
|
|
|
100 |
|
101 |
with torch.no_grad():
|
102 |
if melody_is_wav:
|
103 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
104 |
else:
|
105 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
106 |
|
107 |
return wav_seperate[0]
|
tools/gradio/levo_inference_lowmem.py
CHANGED
@@ -40,7 +40,7 @@ class LeVoInference(torch.nn.Module):
|
|
40 |
)
|
41 |
|
42 |
|
43 |
-
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, params = dict()):
|
44 |
if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
|
45 |
separator = Separator()
|
46 |
audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
|
@@ -112,15 +112,12 @@ class LeVoInference(torch.nn.Module):
|
|
112 |
max_duration = self.max_duration,
|
113 |
seperate_tokenizer = seperate_tokenizer,
|
114 |
)
|
115 |
-
|
116 |
-
if tokens.shape[-1] > 3000:
|
117 |
-
tokens = tokens[..., :3000]
|
118 |
|
119 |
with torch.no_grad():
|
120 |
if melody_is_wav:
|
121 |
-
wav_seperate = model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav)
|
122 |
else:
|
123 |
-
wav_seperate = model.generate_audio(tokens)
|
124 |
|
125 |
del seperate_tokenizer
|
126 |
del model
|
|
|
40 |
)
|
41 |
|
42 |
|
43 |
+
def forward(self, lyric: str, description: str = None, prompt_audio_path: os.PathLike = None, genre: str = None, auto_prompt_path: os.PathLike = None, gen_type: str = "all", params = dict()):
|
44 |
if prompt_audio_path is not None and os.path.exists(prompt_audio_path):
|
45 |
separator = Separator()
|
46 |
audio_tokenizer = builders.get_audio_tokenizer_model(self.cfg.audio_tokenizer_checkpoint, self.cfg)
|
|
|
112 |
max_duration = self.max_duration,
|
113 |
seperate_tokenizer = seperate_tokenizer,
|
114 |
)
|
|
|
|
|
|
|
115 |
|
116 |
with torch.no_grad():
|
117 |
if melody_is_wav:
|
118 |
+
wav_seperate = self.model.generate_audio(tokens, pmt_wav, vocal_wav, bgm_wav, gen_type=gen_type)
|
119 |
else:
|
120 |
+
wav_seperate = self.model.generate_audio(tokens, gen_type=gen_type)
|
121 |
|
122 |
del seperate_tokenizer
|
123 |
del model
|