# Data Processing This is the data processing pipeline for 3D shape and texture generation. **Notes**: 1. This implementation is a simplified version of our industrial pipeline. 2. The rendering script is based on [TRELLIS](https://github.com/microsoft/TRELLIS/blob/main/dataset_toolkits/blender_script/render.py). ## Rendering ### Motivation The rendering script `render/render.py` serves three main purposes: 1. Converting complex 3D formats to PLY files using Blender for further processing. 2. Rendering condition images for DiT training. 3. Rendering orthogonal images, PBR materials, and conditional signals (world-space normals and positions) for texture generation. ### Requirements The rendering scripts are executed with Blender 4.1. You need to install `opencv`, `OpenEXR`, and `Imath` using Blender's Python. Here is an example for a Macbook: ```bash /Applications/Blender.app/Contents/Resources/4.1/python/bin/python3.11 -m pip install OpenEXR Imath opencv-python ``` ### Execution The first two purposes can be executed with a single command: ```bash $BLENDER_PATH -b -P render/render.py -- \ --object ${INPUT_FILE} --geo_mode --resolution 512 \ --output_folder $OUTPUT_FOLDER ``` For the third purpose, simply remove the `--geo_mode` flag. ## Watertight Mesh Processing and Sampling ### Motivation To learn an SDF representation for 3DShape2VecSets, we require a watertight input mesh. This pipeline processes raw triangle meshes to generate three essential data types: 1. **Surface samples** - Input points for the encoder. 2. **Volume samples** - Query points for SDF evaluation in the decoder. 3. **Volume SDFs** - Ground-truth signed distance values for VAE training. ### Execution Process a triangle mesh (OBJ/OFF format) to generate: 1. Watertight mesh (`${OUTPUT_NAME}_watertight.obj`). 2. Surface point samples (`${OUTPUT_NAME}_surface.npz`). 3. Volume samples with SDFs (`${OUTPUT_NAME}_sdf.npz`). **Command:** ```bash python3 watertight/watertight_and_sample.py \ --input_obj ${INPUT_MESH} \ --output_prefix ${OUTPUT_NAME} ``` ### Output Data Format #### 1. Surface Samples (`${OUTPUT_NAME}_surface.npz`) Contains two point cloud arrays in numpy NPZ format: | Key | Shape | Format | Description | |-----------------|----------|----------|---------------------------------| | `random_surface` | `(N, 6)` | `float16`| Uniform point samples on surface | | `sharp_surface` | `(M, 6)` | `float16`| Samples near sharp mesh edges | #### 2. Volume SDF Samples (`${OUTPUT_NAME}_sdf.npz`) Contains three sample types stored as array pairs. For each type `${type}`: | Sample Type | Points Array | SDF Labels Array | Shape | Format | Description | |-----------------|----------------------|----------------------|----------|----------|-------------------------| | `vol` | `vol_points` | `vol_label` | `(P, 3)/(P,)` | `float16`| Random spatial samples | | `random_near` | `random_near_points` | `random_near_label` | `(Q, 3)/(Q,)` | `float16`| Samples near surface | | `sharp_near` | `sharp_near_points` | `sharp_near_label` | `(R, 3)/(R,)` | `float16`| Samples near sharp edges | **Data Specifications**: - All point coordinates (`*_points` arrays) contain 3D positions stored as `float16` values. - All SDF values (`*_label` arrays) are `float16` scalars representing: - **Positive values**: Outside the surface. - **Negative values**: Inside the surface. - **Zero values**: On the surface. - Array dimensions: - `N`, `M`, `P`, `Q`, `R` represent sample counts (vary per shape). - `3` indicates XYZ coordinates. - `6` indicates XYZ/Normal coordinates. - All arrays are stored uncompressed in numpy's NPZ format. ## Overall Script Modify the first four variables in `pipeline.sh`: 1. **INPUT_FILE** The path to each 3D data file. 2. **OUTPUT_FOLDER** The overall path for the output dataset. 3. **NAME** The naming for the output path of each data. 4. **BLENDER_PATH** The executable path for Blender. Then run the following script: ```bash bash pipeline.sh ```