Spaces:
Running
on
Zero
Running
on
Zero
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import argparse | |
import igl | |
import numpy as np | |
import os | |
from scipy.stats import truncnorm | |
import trimesh | |
def random_sample_pointcloud(mesh, num = 30000): | |
points, face_idx = mesh.sample(num, return_index=True) | |
normals = mesh.face_normals[face_idx] | |
rng = np.random.default_rng() | |
index = rng.choice(num, num, replace=False) | |
return points[index], normals[index] | |
def sharp_sample_pointcloud(mesh, num=16384): | |
V = mesh.vertices | |
N = mesh.face_normals | |
VN = mesh.vertex_normals | |
F = mesh.faces | |
VN2 = np.ones(V.shape[0]) | |
for i in range(3): | |
dot = np.stack((VN2[F[:,i]], np.sum(VN[F[:,i]] * N, axis=-1)), axis=-1) | |
VN2[F[:,i]] = np.min(dot, axis=-1) | |
sharp_mask = VN2<0.985 | |
# collect edge | |
edge_a = np.concatenate((F[:,0],F[:,1],F[:,2])) | |
edge_b = np.concatenate((F[:,1],F[:,2],F[:,0])) | |
sharp_edge = ((sharp_mask[edge_a] * sharp_mask[edge_b])) | |
edge_a = edge_a[sharp_edge>0] | |
edge_b = edge_b[sharp_edge>0] | |
sharp_verts_a = V[edge_a] | |
sharp_verts_b = V[edge_b] | |
sharp_verts_an = VN[edge_a] | |
sharp_verts_bn = VN[edge_b] | |
weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1) | |
weights /= np.sum(weights) | |
random_number = np.random.rand(num) | |
w = np.random.rand(num,1) | |
index = np.searchsorted(weights.cumsum(), random_number) | |
samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index] | |
normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index] | |
return samples, normals | |
def sample_sdf(mesh, random_surface, sharp_surface): | |
n_volume_points = sharp_surface.shape[0] * 2 | |
vol_points = (np.random.rand(n_volume_points, 3) - 0.5) * 2 * 1.05 | |
a, b = -0.25, 0.25 | |
mu = 0 | |
# get near points (add offset on surface points) | |
offset1 = truncnorm.rvs((a - mu) / 0.005, (b - mu) / 0.005, loc=mu, scale=0.005, size=(len(random_surface), 3)) | |
offset2 = truncnorm.rvs((a - mu) / 0.05, (b - mu) / 0.05, loc=mu, scale=0.05, size=(len(random_surface), 3)) | |
random_near_points = np.concatenate([ | |
random_surface + offset1, | |
random_surface + offset2 | |
], axis=0) | |
unit_num = len(sharp_surface) // 6 | |
sharp_near_points = np.concatenate([ | |
sharp_surface[:unit_num] + np.random.normal(scale=0.001, size=(unit_num, 3)), | |
sharp_surface[unit_num:unit_num*2] + np.random.normal(scale=0.003, size=(unit_num,3)), | |
sharp_surface[unit_num*2:unit_num*3] + np.random.normal(scale=0.06, size=(unit_num,3)), | |
sharp_surface[unit_num*3:unit_num*4] + np.random.normal(scale=0.01, size=(unit_num,3)), | |
sharp_surface[unit_num*4:unit_num*5] + np.random.normal(scale=0.02, size=(unit_num,3)), | |
sharp_surface[unit_num*5:] + np.random.normal(scale=0.04, size=(len(sharp_surface)-5*unit_num,3)) | |
], axis=0) | |
np.random.shuffle(random_near_points) | |
np.random.shuffle(sharp_near_points) | |
sign_type = igl.SIGNED_DISTANCE_TYPE_FAST_WINDING_NUMBER | |
try: | |
vol_sdf, I, C = igl.signed_distance( | |
vol_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False, | |
sign_type=sign_type) | |
except: | |
vol_sdf, I, C = igl.signed_distance( | |
vol_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False) | |
try: | |
random_near_sdf, I, C = igl.signed_distance( | |
random_near_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False, | |
sign_type=sign_type) | |
except: | |
random_near_sdf, I, C = igl.signed_distance( | |
random_near_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False) | |
try: | |
sharp_near_sdf, I, C = igl.signed_distance( | |
sharp_near_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False, | |
sign_type=sign_type) | |
except: | |
sharp_near_sdf, I, C = igl.signed_distance( | |
sharp_near_points.astype(np.float32), | |
mesh.vertices, mesh.faces, | |
return_normals=False) | |
vol_label = -vol_sdf | |
random_near_label = -random_near_sdf | |
sharp_near_label = -sharp_near_sdf | |
data = { | |
"vol_points": vol_points.astype(np.float16), | |
"vol_label": vol_label.astype(np.float16), | |
"random_near_points": random_near_points.astype(np.float16), | |
"random_near_label": random_near_label.astype(np.float16), | |
"sharp_near_points": sharp_near_points.astype(np.float16), | |
"sharp_near_label": sharp_near_label.astype(np.float16) | |
} | |
return data | |
def SampleMesh(V, F): | |
mesh = trimesh.Trimesh(vertices=V, faces=F) | |
area = mesh.area | |
sample_num = 499712//4 | |
random_surface, random_normal = random_sample_pointcloud(mesh, num=sample_num) | |
random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num) | |
#save_surface | |
surface = np.concatenate((random_surface, random_normal), axis = 1).astype(np.float16) | |
sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(np.float16) | |
surface_data = { | |
"random_surface": surface, | |
"sharp_surface": sharp_surface, | |
} | |
sdf_data = sample_sdf(mesh, random_surface, random_sharp_surface) | |
return surface_data, sdf_data | |
def normalize_to_unit_box(V): | |
""" | |
Normalize the vertices V to fit inside a unit bounding box [0,1]^3. | |
V: (n,3) numpy array of vertex positions. | |
Returns: normalized V | |
""" | |
V_min = V.min(axis=0) | |
V_max = V.max(axis=0) | |
scale = (V_max - V_min).max() * 1.01 | |
V_normalized = (V - V_min) / scale | |
return V_normalized | |
# Given: V (n x 3 array of vertices), F (m x 3 array of faces) | |
# Parameters epsilon/grid_res | |
def Watertight(V, F, epsilon = 2.0/256, grid_res = 256): | |
# Compute bounding box | |
min_corner = V.min(axis=0) | |
max_corner = V.max(axis=0) | |
padding = 0.05 * (max_corner - min_corner) | |
min_corner -= padding | |
max_corner += padding | |
# Create a uniform grid | |
x = np.linspace(min_corner[0], max_corner[0], grid_res) | |
y = np.linspace(min_corner[1], max_corner[1], grid_res) | |
z = np.linspace(min_corner[2], max_corner[2], grid_res) | |
X, Y, Z = np.meshgrid(x, y, z, indexing='ij') | |
grid_points = np.vstack([X.ravel(), Y.ravel(), Z.ravel()]).T | |
# Compute SDF at grid points using igl.signed_distance with pseudo normals | |
sdf, _, _ = igl.signed_distance( | |
grid_points, V, F, sign_type=igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL | |
) | |
# igl.marching_cubes returns (vertices, faces) | |
mc_verts, mc_faces = igl.marching_cubes(epsilon - np.abs(sdf), grid_points, grid_res, grid_res, grid_res, 0.0) | |
# mc_verts: (k x 3) array of vertices of the epsilon contour | |
# mc_faces: (l x 3) array of faces of the epsilon contour | |
return mc_verts, mc_faces | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Process an OBJ file and output surface and SDF data.') | |
parser.add_argument('--input_obj', type=str, help='Path to the input OBJ file') | |
parser.add_argument('--output_prefix', type=str, default=None, | |
help='Base name for output files (default: input OBJ filename without extension)') | |
args = parser.parse_args() | |
input_obj = args.input_obj | |
name = args.output_prefix | |
V, F = igl.read_triangle_mesh(input_obj) | |
V = normalize_to_unit_box(V) | |
mc_verts, mc_faces = Watertight(V, F) | |
surface_data, sdf_data = SampleMesh(mc_verts, mc_faces) | |
parent_folder = os.path.dirname(args.output_prefix) | |
os.makedirs(parent_folder, exist_ok=True) | |
export_surface = f'{name}_surface.npz' | |
np.savez(export_surface, **surface_data) | |
export_sdf = f'{name}_sdf.npz' | |
np.savez(export_sdf, **sdf_data) | |
igl.write_obj(f'{name}_watertight.obj', mc_verts, mc_faces) | |