Huiwenshi's picture
Upload folder using huggingface_hub
600759a verified
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import cv2
import torch
import trimesh
import numpy as np
from PIL import Image
import torch.nn.functional as F
from typing import Union, Optional, Tuple, List, Any, Callable
from dataclasses import dataclass
from enum import Enum
from .camera_utils import (
transform_pos,
get_mv_matrix,
get_orthographic_projection_matrix,
get_perspective_projection_matrix,
)
try:
from .mesh_utils import load_mesh, save_mesh
except:
print("Bpy IO CAN NOT BE Imported!!!")
try:
from .mesh_inpaint_processor import meshVerticeInpaint # , meshVerticeColor
except:
print("InPaint Function CAN NOT BE Imported!!!")
class RenderMode(Enum):
"""Rendering mode enumeration."""
NORMAL = "normal"
POSITION = "position"
ALPHA = "alpha"
UV_POS = "uvpos"
class ReturnType(Enum):
"""Return type enumeration."""
TENSOR = "th"
NUMPY = "np"
PIL = "pl"
class TextureType(Enum):
"""Texture type enumeration."""
DIFFUSE = "diffuse"
METALLIC_ROUGHNESS = "mr"
NORMAL = "normal"
@dataclass
class RenderConfig:
"""Unified rendering configuration."""
elev: float = 0
azim: float = 0
camera_distance: Optional[float] = None
center: Optional[List[float]] = None
resolution: Optional[Union[int, Tuple[int, int]]] = None
bg_color: List[float] = None
return_type: str = "th"
def __post_init__(self):
if self.bg_color is None:
self.bg_color = [1, 1, 1]
@dataclass
class ViewState:
"""Camera view state for rendering pipeline."""
proj_mat: torch.Tensor
mv_mat: torch.Tensor
pos_camera: torch.Tensor
pos_clip: torch.Tensor
resolution: Tuple[int, int]
def stride_from_shape(shape):
"""
Calculate stride values from a given shape for multi-dimensional indexing.
Args:
shape: Tuple or list representing tensor dimensions
Returns:
List of stride values for each dimension
"""
stride = [1]
for x in reversed(shape[1:]):
stride.append(stride[-1] * x)
return list(reversed(stride))
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
"""
Perform scatter-add operation on N-dimensional tensors with counting.
Args:
input: Input tensor [..., C] with D dimensions + C channels
count: Count tensor [..., 1] with D dimensions
indices: Index tensor [N, D] of type long
values: Value tensor [N, C] to scatter
weights: Optional weight tensor [N, C], defaults to ones if None
Returns:
Tuple of (updated_input, updated_count) tensors
"""
# input: [..., C], D dimension + C channel
# count: [..., 1], D dimension
# indices: [N, D], long
# values: [N, C]
D = indices.shape[-1]
C = input.shape[-1]
size = input.shape[:-1]
stride = stride_from_shape(size)
assert len(size) == D
input = input.view(-1, C) # [HW, C]
count = count.view(-1, 1)
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N]
if weights is None:
weights = torch.ones_like(values[..., :1])
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
return input.view(*size, C), count.view(*size, 1)
def linear_grid_put_2d(H, W, coords, values, return_count=False):
"""
Place values on a 2D grid using bilinear interpolation.
Args:
H: Grid height
W: Grid width
coords: Coordinate tensor [N, 2] with values in range [0, 1]
values: Value tensor [N, C] to place on grid
return_count: Whether to return count information
Returns:
2D grid tensor [H, W, C] with interpolated values, optionally with count tensor
"""
# coords: [N, 2], float in [0, 1]
# values: [N, C]
C = values.shape[-1]
indices = coords * torch.tensor([H - 1, W - 1], dtype=torch.float32, device=coords.device)
indices_00 = indices.floor().long() # [N, 2]
indices_00[:, 0].clamp_(0, H - 2)
indices_00[:, 1].clamp_(0, W - 2)
indices_01 = indices_00 + torch.tensor([0, 1], dtype=torch.long, device=indices.device)
indices_10 = indices_00 + torch.tensor([1, 0], dtype=torch.long, device=indices.device)
indices_11 = indices_00 + torch.tensor([1, 1], dtype=torch.long, device=indices.device)
h = indices[..., 0] - indices_00[..., 0].float()
w = indices[..., 1] - indices_00[..., 1].float()
w_00 = (1 - h) * (1 - w)
w_01 = (1 - h) * w
w_10 = h * (1 - w)
w_11 = h * w
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
weights = torch.ones_like(values[..., :1]) # [N, 1]
result, count = scatter_add_nd_with_count(
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1)
)
result, count = scatter_add_nd_with_count(
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1)
)
result, count = scatter_add_nd_with_count(
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1)
)
result, count = scatter_add_nd_with_count(
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1)
)
if return_count:
return result, count
mask = count.squeeze(-1) > 0
result[mask] = result[mask] / count[mask].repeat(1, C)
return result
def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=128, return_count=False):
"""
Place values on 2D grid using mipmap-based multiresolution interpolation to fill holes.
Args:
H: Grid height
W: Grid width
coords: Coordinate tensor [N, 2] with values in range [0, 1]
values: Value tensor [N, C] to place on grid
min_resolution: Minimum resolution for mipmap levels
return_count: Whether to return count information
Returns:
2D grid tensor [H, W, C] with filled values, optionally with count tensor
"""
# coords: [N, 2], float in [0, 1]
# values: [N, C]
C = values.shape[-1]
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C]
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1]
cur_H, cur_W = H, W
while min(cur_H, cur_W) > min_resolution:
# try to fill the holes
mask = count.squeeze(-1) == 0
if not mask.any():
break
cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True)
result[mask] = (
result[mask]
+ F.interpolate(
cur_result.permute(2, 0, 1).unsqueeze(0).contiguous(), (H, W), mode="bilinear", align_corners=False
)
.squeeze(0)
.permute(1, 2, 0)
.contiguous()[mask]
)
count[mask] = (
count[mask]
+ F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode="bilinear", align_corners=False).view(
H, W, 1
)[mask]
)
cur_H //= 2
cur_W //= 2
if return_count:
return result, count
mask = count.squeeze(-1) > 0
result[mask] = result[mask] / count[mask].repeat(1, C)
return result
# ============ Core utility functions for reducing duplication ============
def _normalize_image_input(image: Union[np.ndarray, torch.Tensor, Image.Image]) -> Union[np.ndarray, torch.Tensor]:
"""Normalize image input to consistent format."""
if isinstance(image, Image.Image):
return np.array(image) / 255.0
elif isinstance(image, torch.Tensor):
return image.cpu().numpy() if image.is_cuda else image
return image
def _convert_texture_format(tex: Union[np.ndarray, torch.Tensor, Image.Image],
texture_size: Tuple[int, int], device: str, force_set: bool = False) -> torch.Tensor:
"""Unified texture format conversion logic."""
if not force_set:
if isinstance(tex, np.ndarray):
tex = Image.fromarray((tex * 255).astype(np.uint8))
elif isinstance(tex, torch.Tensor):
tex_np = tex.cpu().numpy()
tex = Image.fromarray((tex_np * 255).astype(np.uint8))
tex = tex.resize(texture_size).convert("RGB")
tex = np.array(tex) / 255.0
return torch.from_numpy(tex).to(device).float()
else:
if isinstance(tex, np.ndarray):
tex = torch.from_numpy(tex)
return tex.to(device).float()
def _format_output(image: torch.Tensor, return_type: str) -> Union[torch.Tensor, np.ndarray, Image.Image]:
"""Convert output to requested format."""
if return_type == ReturnType.NUMPY.value:
return image.cpu().numpy()
elif return_type == ReturnType.PIL.value:
img_np = image.cpu().numpy() * 255
return Image.fromarray(img_np.astype(np.uint8))
return image
def _ensure_resolution_format(resolution: Optional[Union[int, Tuple[int, int]]],
default: Tuple[int, int]) -> Tuple[int, int]:
"""Ensure resolution is in (height, width) format."""
if resolution is None:
return default
if isinstance(resolution, (int, float)):
return (int(resolution), int(resolution))
return tuple(resolution)
def _apply_background_mask(content: torch.Tensor, visible_mask: torch.Tensor,
bg_color: List[float], device: str) -> torch.Tensor:
"""Apply background color to masked regions."""
bg_tensor = torch.tensor(bg_color, dtype=torch.float32, device=device)
return content * visible_mask + bg_tensor * (1 - visible_mask)
class MeshRender:
def __init__(
self,
camera_distance=1.45,
camera_type="orth",
default_resolution=1024,
texture_size=1024,
use_antialias=True,
max_mip_level=None,
filter_mode="linear-mipmap-linear",
bake_mode="back_sample",
raster_mode="cr",
shader_type="face",
use_opengl=False,
device="cuda",
):
"""
Initialize mesh renderer with configurable parameters.
Args:
camera_distance: Distance from camera to object center
camera_type: Type of camera projection ("orth" or "perspective")
default_resolution: Default rendering resolution
texture_size: Size of texture maps
use_antialias: Whether to use antialiasing
max_mip_level: Maximum mipmap level for texture filtering
filter_mode: Texture filtering mode
bake_mode: Texture baking method ("back_sample", "linear", "mip-map")
raster_mode: Rasterization backend ("cr" for custom rasterizer)
shader_type: Shading type ("face" or "vertex")
use_opengl: Whether to use OpenGL backend (deprecated)
device: Computing device ("cuda" or "cpu")
"""
self.device = device
self.set_default_render_resolution(default_resolution)
self.set_default_texture_resolution(texture_size)
self.camera_distance = camera_distance
self.use_antialias = use_antialias
self.max_mip_level = max_mip_level
self.filter_mode = filter_mode
self.bake_angle_thres = 75
self.set_boundary_unreliable_scale(2)
self.bake_mode = bake_mode
self.shader_type = shader_type
self.raster_mode = raster_mode
if self.raster_mode == "cr":
import custom_rasterizer as cr
self.raster = cr
else:
raise f"No raster named {self.raster_mode}"
if camera_type == "orth":
self.set_orth_scale(1.2)
elif camera_type == "perspective":
self.camera_proj_mat = get_perspective_projection_matrix(
49.13, self.default_resolution[1] / self.default_resolution[0], 0.01, 100.0
)
else:
raise f"No camera type {camera_type}"
# Removed multiprocessing components for single-threaded version
def _create_view_state(self, config: RenderConfig) -> ViewState:
"""Create unified view state for rendering pipeline."""
proj = self.camera_proj_mat
r_mv = get_mv_matrix(
elev=config.elev,
azim=config.azim,
camera_distance=self.camera_distance if config.camera_distance is None else config.camera_distance,
center=config.center,
)
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
pos_clip = transform_pos(proj, pos_camera)
resolution = _ensure_resolution_format(config.resolution, self.default_resolution)
return ViewState(proj, r_mv, pos_camera, pos_clip, resolution)
def _compute_face_normals(self, triangles: torch.Tensor) -> torch.Tensor:
"""Compute face normals from triangle vertices."""
return F.normalize(
torch.cross(
triangles[:, 1, :] - triangles[:, 0, :],
triangles[:, 2, :] - triangles[:, 0, :],
dim=-1,
),
dim=-1,
)
def _get_normals_for_shading(self, view_state: ViewState, use_abs_coor: bool = False) -> torch.Tensor:
"""Get normals based on shader type and coordinate system."""
if use_abs_coor:
mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :]
else:
pos_camera = view_state.pos_camera[:, :3] / view_state.pos_camera[:, 3:4]
mesh_triangles = pos_camera[self.pos_idx[:, :3], :]
face_normals = self._compute_face_normals(mesh_triangles)
# Common rasterization
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
if self.shader_type == "vertex":
vertex_normals = trimesh.geometry.mean_vertex_normals(
vertex_count=self.vtx_pos.shape[0],
faces=self.pos_idx.cpu(),
face_normals=face_normals.cpu(),
)
vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous()
normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
elif self.shader_type == "face":
tri_ids = rast_out[..., 3]
tri_ids_mask = tri_ids > 0
tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out)
normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)]
return normal, rast_out
def _unified_render_pipeline(self, config: RenderConfig, mode: RenderMode, **kwargs) -> torch.Tensor:
"""Unified rendering pipeline for all render modes."""
view_state = self._create_view_state(config)
if mode == RenderMode.ALPHA:
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
return rast_out[..., -1:].long()
elif mode == RenderMode.UV_POS:
return self.uv_feature_map(self.vtx_pos * 0.5 + 0.5)
elif mode == RenderMode.NORMAL:
use_abs_coor = kwargs.get('use_abs_coor', False)
normalize_rgb = kwargs.get('normalize_rgb', True)
normal, rast_out = self._get_normals_for_shading(view_state, use_abs_coor)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
result = _apply_background_mask(normal, visible_mask, config.bg_color, self.device)
if normalize_rgb:
result = (result + 1) * 0.5
if self.use_antialias:
result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx)
return result[0, ...]
elif mode == RenderMode.POSITION:
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor
tex_position = tex_position.contiguous()
position, _ = self.raster_interpolate(tex_position[None, ...], rast_out, self.pos_idx)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
result = _apply_background_mask(position, visible_mask, config.bg_color, self.device)
if self.use_antialias:
result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx)
return result[0, ...]
def set_orth_scale(self, ortho_scale):
"""
Set the orthographic projection scale and update camera projection matrix.
Args:
ortho_scale: Scale factor for orthographic projection
"""
self.ortho_scale = ortho_scale
self.camera_proj_mat = get_orthographic_projection_matrix(
left=-self.ortho_scale * 0.5,
right=self.ortho_scale * 0.5,
bottom=-self.ortho_scale * 0.5,
top=self.ortho_scale * 0.5,
near=0.1,
far=100,
)
def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
"""
Rasterize triangular mesh using the configured rasterization backend.
Args:
pos: Vertex positions in clip space
tri: Triangle indices
resolution: Rendering resolution [height, width]
ranges: Optional rendering ranges (unused in current implementation)
grad_db: Whether to compute gradients (unused in current implementation)
Returns:
Tuple of (rasterization_output, gradient_info)
"""
if self.raster_mode == "cr":
rast_out_db = None
if pos.dim() == 2:
pos = pos.unsqueeze(0)
# 确保pos是float32类型
if pos.dtype == torch.float64:
pos = pos.to(torch.float32)
# 确保tri是int32类型
if tri.dtype == torch.int64:
tri = tri.to(torch.int32)
findices, barycentric = self.raster.rasterize(pos, tri, resolution)
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1)
rast_out = rast_out.unsqueeze(0)
else:
raise f"No raster named {self.raster_mode}"
return rast_out, rast_out_db
def raster_interpolate(self, uv, rast_out, uv_idx):
"""
Interpolate texture coordinates or vertex attributes across rasterized triangles.
Args:
uv: UV coordinates or vertex attributes to interpolate
rast_out: Rasterization output containing barycentric coordinates
uv_idx: UV or vertex indices for triangles
Returns:
Tuple of (interpolated_values, gradient_info)
"""
if self.raster_mode == "cr":
textd = None
barycentric = rast_out[0, ..., :-1]
findices = rast_out[0, ..., -1]
if uv.dim() == 2:
uv = uv.unsqueeze(0)
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx)
else:
raise f"No raster named {self.raster_mode}"
return textc, textd
def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0):
"""
Apply antialiasing to rendered colors (currently returns input unchanged).
Args:
color: Input color values
rast: Rasterization output
pos: Vertex positions
tri: Triangle indices
topology_hash: Optional topology hash for optimization
pos_gradient_boost: Gradient boosting factor
Returns:
Antialiased color values
"""
if self.raster_mode == "cr":
color = color
else:
raise f"No raster named {self.raster_mode}"
return color
def set_boundary_unreliable_scale(self, scale):
"""
Set the kernel size for boundary unreliable region detection during texture baking.
Args:
scale: Scale factor relative to 512 resolution baseline
"""
self.bake_unreliable_kernel_size = int(
(scale / 512) * max(self.default_resolution[0], self.default_resolution[1])
)
def load_mesh(
self,
mesh,
scale_factor=1.15,
auto_center=True,
):
"""
Load mesh from file and set up rendering data structures.
Args:
mesh: Path to mesh file or mesh object
scale_factor: Scaling factor for mesh normalization
auto_center: Whether to automatically center the mesh
"""
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh)
self.set_mesh(
vtx_pos, pos_idx, vtx_uv=vtx_uv, uv_idx=uv_idx, scale_factor=scale_factor, auto_center=auto_center
)
if texture_data is not None:
self.set_texture(texture_data)
def save_mesh(self, mesh_path, downsample=False):
"""
Save current mesh with textures to file.
Args:
mesh_path: Output file path
downsample: Whether to downsample textures by half
"""
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh(normalize=False)
texture_data = self.get_texture()
texture_metallic, texture_roughness = self.get_texture_mr()
texture_normal = self.get_texture_normal()
if downsample:
texture_data = cv2.resize(texture_data, (texture_data.shape[1] // 2, texture_data.shape[0] // 2))
if texture_metallic is not None:
texture_metallic = cv2.resize(
texture_metallic, (texture_metallic.shape[1] // 2, texture_metallic.shape[0] // 2)
)
if texture_roughness is not None:
texture_roughness = cv2.resize(
texture_roughness, (texture_roughness.shape[1] // 2, texture_roughness.shape[0] // 2)
)
if texture_normal is not None:
texture_normal = cv2.resize(
texture_normal, (texture_normal.shape[1] // 2, texture_normal.shape[0] // 2)
)
save_mesh(
mesh_path,
vtx_pos,
pos_idx,
vtx_uv,
uv_idx,
texture_data,
metallic=texture_metallic,
roughness=texture_roughness,
normal=texture_normal,
)
def set_mesh(self, vtx_pos, pos_idx, vtx_uv=None, uv_idx=None, scale_factor=1.15, auto_center=True):
"""
Set mesh geometry data and perform coordinate transformations.
Args:
vtx_pos: Vertex positions [N, 3]
pos_idx: Triangle vertex indices [F, 3]
vtx_uv: UV coordinates [N, 2], optional
uv_idx: Triangle UV indices [F, 3], optional
scale_factor: Scaling factor for mesh normalization
auto_center: Whether to automatically center and scale the mesh
"""
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device)
self.pos_idx = torch.from_numpy(pos_idx).to(self.device)
# 确保顶点位置是float32类型
if self.vtx_pos.dtype == torch.float64:
self.vtx_pos = self.vtx_pos.to(torch.float32)
# 确保索引类型为int32
if self.pos_idx.dtype == torch.int64:
self.pos_idx = self.pos_idx.to(torch.int32)
if (vtx_uv is not None) and (uv_idx is not None):
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device)
self.uv_idx = torch.from_numpy(uv_idx).to(self.device)
# 确保UV坐标是float32类型
if self.vtx_uv.dtype == torch.float64:
self.vtx_uv = self.vtx_uv.to(torch.float32)
# 确保UV索引类型为int32
if self.uv_idx.dtype == torch.int64:
self.uv_idx = self.uv_idx.to(torch.int32)
else:
self.vtx_uv = None
self.uv_idx = None
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]]
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]]
if (vtx_uv is not None) and (uv_idx is not None):
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1]
pass
if auto_center:
max_bb = (self.vtx_pos - 0).max(0)[0]
min_bb = (self.vtx_pos - 0).min(0)[0]
center = (max_bb + min_bb) / 2
scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0
self.vtx_pos = (self.vtx_pos - center) * (scale_factor / float(scale))
self.scale_factor = scale_factor
self.mesh_normalize_scale_factor = scale_factor / float(scale)
self.mesh_normalize_scale_center = center.unsqueeze(0).cpu().numpy()
else:
self.scale_factor = 1.0
self.mesh_normalize_scale_factor = 1.0
self.mesh_normalize_scale_center = np.array([[0, 0, 0]])
if uv_idx is not None:
self.extract_textiles()
def _set_texture_unified(self, tex: Union[np.ndarray, torch.Tensor, Image.Image],
texture_type: TextureType, force_set: bool = False):
"""Unified texture setting method."""
converted_tex = _convert_texture_format(tex, self.texture_size, self.device, force_set)
if texture_type == TextureType.DIFFUSE:
self.tex = converted_tex
elif texture_type == TextureType.METALLIC_ROUGHNESS:
self.tex_mr = converted_tex
elif texture_type == TextureType.NORMAL:
self.tex_normalMap = converted_tex
def set_texture(self, tex, force_set=False):
"""Set the main diffuse texture for the mesh."""
self._set_texture_unified(tex, TextureType.DIFFUSE, force_set)
def set_texture_mr(self, mr, force_set=False):
"""Set metallic-roughness texture for PBR rendering."""
self._set_texture_unified(mr, TextureType.METALLIC_ROUGHNESS, force_set)
def set_texture_normal(self, normal, force_set=False):
"""Set normal map texture for surface detail."""
self._set_texture_unified(normal, TextureType.NORMAL, force_set)
def set_default_render_resolution(self, default_resolution):
"""
Set the default resolution for rendering operations.
Args:
default_resolution: Resolution as int (square) or tuple (height, width)
"""
if isinstance(default_resolution, int):
default_resolution = (default_resolution, default_resolution)
self.default_resolution = default_resolution
def set_default_texture_resolution(self, texture_size):
"""
Set the default texture resolution for UV mapping operations.
Args:
texture_size: Texture size as int (square) or tuple (height, width)
"""
if isinstance(texture_size, int):
texture_size = (texture_size, texture_size)
self.texture_size = texture_size
def get_face_num(self):
"""
Get the number of triangular faces in the mesh.
Returns:
Number of faces as integer
"""
return self.pos_idx.shape[0]
def get_vertex_num(self):
"""
Get the number of vertices in the mesh.
Returns:
Number of vertices as integer
"""
return self.vtx_pos.shape[0]
def get_face_areas(self, from_one_index=False):
"""
Calculate the area of each triangular face in the mesh.
Args:
from_one_index: If True, insert zero at beginning for 1-indexed face IDs
Returns:
Numpy array of face areas
"""
v0 = self.vtx_pos[self.pos_idx[:, 0], :]
v1 = self.vtx_pos[self.pos_idx[:, 1], :]
v2 = self.vtx_pos[self.pos_idx[:, 2], :]
# 计算两个边向量
edge1 = v1 - v0
edge2 = v2 - v0
# 计算叉积的模长的一半即为面积
areas = torch.norm(torch.cross(edge1, edge2, dim=-1), dim=-1) * 0.5
areas = areas.cpu().numpy()
if from_one_index:
# 在数组前面插入一个0,因为三角片索引是从1开始的
areas = np.insert(areas, 0, 0)
return areas
def get_mesh(self, normalize=True):
"""
Get mesh geometry with optional coordinate denormalization.
Args:
normalize: Whether to keep normalized coordinates (True) or restore original scale (False)
Returns:
Tuple of (vertex_positions, face_indices, uv_coordinates, uv_indices)
"""
vtx_pos = self.vtx_pos.cpu().numpy()
pos_idx = self.pos_idx.cpu().numpy()
vtx_uv = self.vtx_uv.cpu().numpy()
uv_idx = self.uv_idx.cpu().numpy()
# 坐标变换的逆变换
if not normalize:
vtx_pos = vtx_pos / self.mesh_normalize_scale_factor
vtx_pos = vtx_pos + self.mesh_normalize_scale_center
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]]
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]]
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1]
return vtx_pos, pos_idx, vtx_uv, uv_idx
def get_texture(self):
"""
Get the current diffuse texture as numpy array.
Returns:
Texture as numpy array in range [0, 1]
"""
return self.tex.cpu().numpy()
def get_texture_mr(self):
"""
Get metallic and roughness textures as separate channels.
Returns:
Tuple of (metallic_texture, roughness_texture) as numpy arrays, or (None, None) if not set
"""
metallic, roughness = None, None
if hasattr(self, "tex_mr"):
mr = self.tex_mr.cpu().numpy()
metallic = np.repeat(mr[:, :, 0:1], repeats=3, axis=2)
roughness = np.repeat(mr[:, :, 1:2], repeats=3, axis=2)
return metallic, roughness
def get_texture_normal(self):
"""
Get the normal map texture as numpy array.
Returns:
Normal map as numpy array, or None if not set
"""
normal = None
if hasattr(self, "tex_normalMap"):
normal = self.tex_normalMap.cpu().numpy()
return normal
def to(self, device):
"""
Move all tensor attributes to the specified device.
Args:
device: Target device ("cuda", "cpu", etc.)
"""
self.device = device
for attr_name in dir(self):
attr_value = getattr(self, attr_name)
if isinstance(attr_value, torch.Tensor):
setattr(self, attr_name, attr_value.to(self.device))
def color_rgb_to_srgb(self, image):
"""
Convert RGB color values to sRGB color space using gamma correction.
Args:
image: Input image as PIL Image, numpy array, or torch tensor
Returns:
sRGB corrected image in same format as input
"""
if isinstance(image, Image.Image):
image_rgb = torch.tesnor(np.array(image) / 255.0).float().to(self.device)
elif isinstance(image, np.ndarray):
image_rgb = torch.tensor(image).float()
else:
image_rgb = image.to(self.device)
image_srgb = torch.where(
image_rgb <= 0.0031308, 12.92 * image_rgb, 1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055
)
if isinstance(image, Image.Image):
image_srgb = Image.fromarray((image_srgb.cpu().numpy() * 255).astype(np.uint8))
elif isinstance(image, np.ndarray):
image_srgb = image_srgb.cpu().numpy()
else:
image_srgb = image_srgb.to(image.device)
return image_srgb
def extract_textiles(self):
"""
Extract texture-space position and normal information by rasterizing
the mesh in UV coordinate space. Creates texture-space geometry mappings.
"""
vnum = self.vtx_uv.shape[0]
vtx_uv = torch.cat(
(self.vtx_uv, torch.zeros_like(self.vtx_uv[:, 0:1]), torch.ones_like(self.vtx_uv[:, 0:1])), axis=1
)
vtx_uv = vtx_uv.view(1, vnum, 4) * 2 - 1
rast_out, rast_out_db = self.raster_rasterize(vtx_uv, self.uv_idx, resolution=self.texture_size)
position, _ = self.raster_interpolate(self.vtx_pos, rast_out, self.pos_idx)
v0 = self.vtx_pos[self.pos_idx[:, 0], :]
v1 = self.vtx_pos[self.pos_idx[:, 1], :]
v2 = self.vtx_pos[self.pos_idx[:, 2], :]
face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
vertex_normals = trimesh.geometry.mean_vertex_normals(
vertex_count=self.vtx_pos.shape[0],
faces=self.pos_idx.cpu(),
face_normals=face_normals.cpu(),
)
vertex_normals = torch.from_numpy(vertex_normals).to(self.vtx_pos).contiguous()
position_normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ..., 0]
position = position[0]
position_normal = position_normal[0]
tri_ids = rast_out[0, ..., 3]
tri_ids_mask = tri_ids > 0
tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
position_normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[
tri_ids[tri_ids_mask].view(-1)
]
row = torch.arange(position.shape[0]).to(visible_mask.device)
col = torch.arange(position.shape[1]).to(visible_mask.device)
grid_i, grid_j = torch.meshgrid(row, col, indexing="ij")
mask = visible_mask.reshape(-1) > 0
position = position.reshape(-1, 3)[mask]
position_normal = position_normal.reshape(-1, 3)[mask]
position = torch.cat((position, torch.ones_like(position[:, :1])), axis=-1)
grid = torch.stack((grid_i, grid_j), -1).reshape(-1, 2)[mask]
texture_indices = (
torch.ones(self.texture_size[0], self.texture_size[1], device=self.device, dtype=torch.long) * -1
)
texture_indices.view(-1)[grid[:, 0] * self.texture_size[1] + grid[:, 1]] = torch.arange(grid.shape[0]).to(
device=self.device, dtype=torch.long
)
self.tex_position = position
self.tex_normal = position_normal
self.tex_grid = grid
self.texture_indices = texture_indices
def render_normal(self, elev, azim, camera_distance=None, center=None, resolution=None,
bg_color=[1, 1, 1], use_abs_coor=False, normalize_rgb=True, return_type="th"):
"""Render surface normals of the mesh from specified viewpoint."""
config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type)
image = self._unified_render_pipeline(config, RenderMode.NORMAL,
use_abs_coor=use_abs_coor, normalize_rgb=normalize_rgb)
return _format_output(image, return_type)
def convert_normal_map(self, image):
"""
Convert normal map from standard format to renderer's coordinate system.
Applies coordinate transformations for proper normal interpretation.
Args:
image: Input normal map as PIL Image or numpy array
Returns:
Converted normal map as PIL Image
"""
# blue is front, red is left, green is top
if isinstance(image, Image.Image):
image = np.array(image)
mask = (image == [255, 255, 255]).all(axis=-1)
image = (image / 255.0) * 2.0 - 1.0
image[..., [1]] = -image[..., [1]]
image[..., [1, 2]] = image[..., [2, 1]]
image[..., [0]] = -image[..., [0]]
image = (image + 1.0) * 0.5
image = (image * 255).astype(np.uint8)
image[mask] = [127, 127, 255]
return Image.fromarray(image)
def render_position(self, elev, azim, camera_distance=None, center=None, resolution=None,
bg_color=[1, 1, 1], return_type="th"):
"""Render world-space positions of visible mesh surface points."""
config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type)
image = self._unified_render_pipeline(config, RenderMode.POSITION)
if return_type == ReturnType.PIL.value:
image = image.squeeze(-1).cpu().numpy() * 255
return Image.fromarray(image.astype(np.uint8))
return _format_output(image, return_type)
def render_uvpos(self, return_type="th"):
"""Render vertex positions mapped to UV texture space."""
config = RenderConfig(return_type=return_type)
image = self._unified_render_pipeline(config, RenderMode.UV_POS)
return _format_output(image, return_type)
def render_alpha(self, elev, azim, camera_distance=None, center=None, resolution=None, return_type="th"):
"""Render binary alpha mask indicating visible mesh regions."""
config = RenderConfig(elev, azim, camera_distance, center, resolution, return_type=return_type)
image = self._unified_render_pipeline(config, RenderMode.ALPHA)
if return_type == ReturnType.PIL.value:
raise Exception("PIL format not supported for alpha rendering")
return _format_output(image, return_type)
def uv_feature_map(self, vert_feat, bg=None):
"""
Map per-vertex features to UV texture space using mesh topology.
Args:
vert_feat: Per-vertex feature tensor [N, C]
bg: Background value for unmapped regions (optional)
Returns:
Feature map in UV texture space [H, W, C]
"""
vtx_uv = self.vtx_uv * 2 - 1.0
vtx_uv = torch.cat([vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0)
vtx_uv[..., -1] = 1
uv_idx = self.uv_idx
rast_out, rast_out_db = self.raster_rasterize(vtx_uv, uv_idx, resolution=self.texture_size)
feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx)
feat_map = feat_map[0, ...]
if bg is not None:
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
feat_map[visible_mask == 0] = bg
return feat_map
def render_sketch_from_geometry(self, normal_image, depth_image):
"""
Generate sketch-style edge image from rendered normal and depth maps.
Args:
normal_image: Rendered normal map tensor
depth_image: Rendered depth map tensor
Returns:
Binary edge sketch image as tensor
"""
normal_image_np = normal_image.cpu().numpy()
depth_image_np = depth_image.cpu().numpy()
normal_image_np = (normal_image_np * 255).astype(np.uint8)
depth_image_np = (depth_image_np * 255).astype(np.uint8)
normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY)
normal_edges = cv2.Canny(normal_image_np, 80, 150)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
combined_edges = np.maximum(normal_edges, depth_edges)
sketch_image = torch.from_numpy(combined_edges).to(normal_image.device).float() / 255.0
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def render_sketch_from_depth(self, depth_image):
"""
Generate sketch-style edge image from depth map using edge detection.
Args:
depth_image: Input depth map tensor
Returns:
Binary edge sketch image as tensor
"""
depth_image_np = depth_image.cpu().numpy()
depth_image_np = (depth_image_np * 255).astype(np.uint8)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
combined_edges = depth_edges
sketch_image = torch.from_numpy(combined_edges).to(depth_image.device).float() / 255.0
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def back_project(self, image, elev, azim, camera_distance=None, center=None, method=None):
"""
Back-project a rendered image onto the mesh's UV texture space.
Handles visibility, viewing angle, and boundary detection for texture baking.
Args:
image: Input image to back-project (PIL Image, numpy array, or tensor)
elev: Camera elevation angle in degrees used for rendering
azim: Camera azimuth angle in degrees used for rendering
camera_distance: Camera distance (uses default if None)
center: Camera focus center (uses origin if None)
method: Back-projection method ("linear", "mip-map", "back_sample", uses default if None)
Returns:
Tuple of (texture, cosine_map, boundary_map) tensors in UV space
"""
if isinstance(image, Image.Image):
image = torch.tensor(np.array(image) / 255.0)
elif isinstance(image, np.ndarray):
image = torch.tensor(image)
if image.dim() == 2:
image = image.unsqueeze(-1)
image = image.float().to(self.device)
resolution = image.shape[:2]
channel = image.shape[-1]
texture = torch.zeros(self.texture_size + (channel,)).to(self.device)
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device)
proj = self.camera_proj_mat
r_mv = get_mv_matrix(
elev=elev,
azim=azim,
camera_distance=self.camera_distance if camera_distance is None else camera_distance,
center=center,
)
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
pos_clip = transform_pos(proj, pos_camera)
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]
v0 = pos_camera[self.pos_idx[:, 0], :]
v1 = pos_camera[self.pos_idx[:, 1], :]
v2 = pos_camera[self.pos_idx[:, 2], :]
face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
rast_out, rast_out_db = self.raster_rasterize(pos_clip, self.pos_idx, resolution=resolution)
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
if self.shader_type == "vertex":
vertex_normals = trimesh.geometry.mean_vertex_normals(
vertex_count=self.vtx_pos.shape[0],
faces=self.pos_idx.cpu(),
face_normals=face_normals.cpu(),
)
vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous()
normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
elif self.shader_type == "face":
tri_ids = rast_out[..., 3]
tri_ids_mask = tri_ids > 0
tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out)
normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)]
normal = normal[0, ...]
uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx)
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
depth = depth[0, ...]
depth_max, depth_min = depth[visible_mask > 0].max(), depth[visible_mask > 0].min()
depth_normalized = (depth - depth_min) / (depth_max - depth_min)
depth_image = depth_normalized * visible_mask # Mask out background.
sketch_image = self.render_sketch_from_depth(depth_image)
lookat = torch.tensor([[0, 0, -1]], device=self.device)
cos_image = torch.nn.functional.cosine_similarity(lookat, normal.view(-1, 3))
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1)
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi)
cos_image[cos_image < cos_thres] = 0
# shrink
if self.bake_unreliable_kernel_size > 0:
kernel_size = self.bake_unreliable_kernel_size * 2 + 1
kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=torch.float32).to(sketch_image.device)
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float()
visible_mask = F.conv2d(1.0 - visible_mask, kernel, padding=kernel_size // 2)
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0)
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2)
sketch_image = (sketch_image > 0).float() # 二值化
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
visible_mask = visible_mask * (sketch_image < 0.5)
cos_image[visible_mask == 0] = 0
method = self.bake_mode if method is None else method
if method == "linear":
proj_mask = (visible_mask != 0).view(-1)
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask]
texture = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image)
cos_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image)
boundary_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image)
elif method == "mip-map":
proj_mask = (visible_mask != 0).view(-1)
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
texture = mipmap_linear_grid_put_2d(
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image, min_resolution=128
)
cos_map = mipmap_linear_grid_put_2d(
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image, min_resolution=256
)
if self.vtx_map is not None:
vertex_normals = vertex_normals[self.vtx_map, :]
normal_map = self.uv_feature_map(vertex_normals)
cos_map_uv = torch.nn.functional.cosine_similarity(lookat, normal_map.view(-1, 3)) # .abs()
cos_map_uv = cos_map_uv.view(1, 1, normal_map.shape[0], normal_map.shape[1])
cos_map_uv = torch.nn.functional.max_pool2d(cos_map_uv, kernel_size=3, stride=1, padding=1)
cos_map_uv = cos_map_uv.reshape(self.texture_size[0], self.texture_size[1], 1)
cos_map_uv[cos_map_uv < cos_thres] = 0
# cos_map = torch.min(cos_map, cos_map_uv)
cos_map[cos_map_uv < cos_thres] = 0
elif method == "back_sample":
img_proj = torch.from_numpy(
np.array(((proj[0, 0], 0, 0, 0), (0, proj[1, 1], 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)))
).to(self.tex_position)
w2c = torch.from_numpy(r_mv).to(self.tex_position)
v_proj = self.tex_position @ w2c.T @ img_proj
inner_mask = (v_proj[:, 0] <= 1.0) & (v_proj[:, 0] >= -1.0) & (v_proj[:, 1] <= 1.0) & (v_proj[:, 1] >= -1.0)
inner_valid_idx = torch.where(inner_mask)[0].long()
img_x = torch.clamp(
((v_proj[:, 0].clamp(-1, 1) * 0.5 + 0.5) * (resolution[0])).long(), 0, resolution[0] - 1
)
img_y = torch.clamp(
((v_proj[:, 1].clamp(-1, 1) * 0.5 + 0.5) * (resolution[1])).long(), 0, resolution[1] - 1
)
indices = img_y * resolution[0] + img_x
sampled_z = depth.reshape(-1)[indices]
sampled_m = visible_mask.reshape(-1)[indices]
v_z = v_proj[:, 2]
sampled_w = cos_image.reshape(-1)[indices]
depth_thres = 3e-3
# valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) * (sampled_m*sampled_w>0))[0]
valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) & (sampled_m * sampled_w > 0))[0]
intersection_mask = torch.isin(valid_idx, inner_valid_idx)
valid_idx = valid_idx[intersection_mask].to(inner_valid_idx)
indices = indices[valid_idx]
sampled_b = sketch_image.reshape(-1)[indices]
sampled_w = sampled_w[valid_idx]
# bilinear sampling rgb
wx = ((v_proj[:, 0] * 0.5 + 0.5) * resolution[0] - img_x)[valid_idx].reshape(-1, 1)
wy = ((v_proj[:, 1] * 0.5 + 0.5) * resolution[1] - img_y)[valid_idx].reshape(-1, 1)
img_x = img_x[valid_idx]
img_y = img_y[valid_idx]
img_x_r = torch.clamp(img_x + 1, 0, resolution[0] - 1)
img_y_r = torch.clamp(img_y + 1, 0, resolution[1] - 1)
indices_lr = img_y * resolution[0] + img_x_r
indices_rl = img_y_r * resolution[0] + img_x
indices_rr = img_y_r * resolution[0] + img_x_r
rgb = image.reshape(-1, channel)
sampled_rgb = (rgb[indices] * (1 - wx) + rgb[indices_lr] * wx) * (1 - wy) + (
rgb[indices_rl] * (1 - wx) + rgb[indices_rr] * wx
) * wy
# return sampled_rgb, sampled_w, sampled_b, valid_idx
texture = torch.zeros(self.texture_size[0], self.texture_size[1], channel, device=self.device).reshape(
-1, channel
)
cos_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1)
boundary_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1)
valid_tex_indices = self.tex_grid[valid_idx, 0] * self.texture_size[1] + self.tex_grid[valid_idx, 1]
texture[valid_tex_indices, :] = sampled_rgb
cos_map[valid_tex_indices] = sampled_w
boundary_map[valid_tex_indices] = sampled_b
texture = texture.view(self.texture_size[0], self.texture_size[1], channel)
cos_map = cos_map.view(self.texture_size[0], self.texture_size[1], 1)
# texture = torch.clamp(texture,0,1)
else:
raise f"No bake mode {method}"
return texture, cos_map, boundary_map
def bake_texture(self, colors, elevs, azims, camera_distance=None, center=None, exp=6, weights=None):
"""
Bake multiple view images into a single UV texture using weighted blending.
Args:
colors: List of input images (tensors, numpy arrays, or PIL Images)
elevs: List of elevation angles for each view
azims: List of azimuth angles for each view
camera_distance: Camera distance (uses default if None)
center: Camera focus center (uses origin if None)
exp: Exponent for cosine weighting (higher values favor front-facing views)
weights: Optional per-view weights (defaults to 1.0 for all views)
Returns:
Tuple of (merged_texture, trust_map) tensors in UV space
"""
if isinstance(colors, torch.Tensor):
colors = [colors[i, ...].float().permute(1, 2, 0) for i in range(colors.shape[0])]
else:
for i in range(len(colors)):
if isinstance(colors[i], Image.Image):
colors[i] = torch.tensor(np.array(colors[i]) / 255.0, device=self.device).float()
if weights is None:
weights = [1.0 for _ in range(len(colors))]
textures = []
cos_maps = []
for color, elev, azim, weight in zip(colors, elevs, azims, weights):
texture, cos_map, _ = self.back_project(color, elev, azim, camera_distance, center)
cos_map = weight * (cos_map**exp)
textures.append(texture)
cos_maps.append(cos_map)
texture_merge, trust_map_merge = self.fast_bake_texture(textures, cos_maps)
return texture_merge, trust_map_merge
@torch.no_grad()
def fast_bake_texture(self, textures, cos_maps):
"""
Efficiently merge multiple textures using cosine-weighted blending.
Optimizes by skipping views that don't contribute new information.
Args:
textures: List of texture tensors to merge
cos_maps: List of corresponding cosine weight maps
Returns:
Tuple of (merged_texture, valid_mask) tensors
"""
channel = textures[0].shape[-1]
texture_merge = torch.zeros(self.texture_size + (channel,)).to(self.device)
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device)
for texture, cos_map in zip(textures, cos_maps):
view_sum = (cos_map > 0).sum()
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
if painted_sum / view_sum > 0.99:
continue
texture_merge += texture * cos_map
trust_map_merge += cos_map
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
return texture_merge, trust_map_merge > 1e-8
@torch.no_grad()
def uv_inpaint(self, texture, mask, vertex_inpaint=True, method="NS", return_float=False):
"""
Inpaint missing regions in UV texture using mesh-aware and traditional methods.
Args:
texture: Input texture as tensor, numpy array, or PIL Image
mask: Binary mask indicating regions to inpaint (1 = keep, 0 = inpaint)
vertex_inpaint: Whether to use mesh vertex connectivity for inpainting
method: Inpainting method ("NS" for Navier-Stokes)
return_float: Whether to return float values (False returns uint8)
Returns:
Inpainted texture as numpy array
"""
if isinstance(texture, torch.Tensor):
texture_np = texture.cpu().numpy()
elif isinstance(texture, np.ndarray):
texture_np = texture
elif isinstance(texture, Image.Image):
texture_np = np.array(texture) / 255.0
if isinstance(mask, torch.Tensor):
mask = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
if vertex_inpaint:
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh()
texture_np, mask = meshVerticeInpaint(texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx)
if method == "NS":
texture_np = cv2.inpaint((texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS)
assert return_float == False
return texture_np