Spaces:
Running
on
Zero
Running
on
Zero
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import cv2 | |
import torch | |
import trimesh | |
import numpy as np | |
from PIL import Image | |
import torch.nn.functional as F | |
from typing import Union, Optional, Tuple, List, Any, Callable | |
from dataclasses import dataclass | |
from enum import Enum | |
from .camera_utils import ( | |
transform_pos, | |
get_mv_matrix, | |
get_orthographic_projection_matrix, | |
get_perspective_projection_matrix, | |
) | |
try: | |
from .mesh_utils import load_mesh, save_mesh | |
except: | |
print("Bpy IO CAN NOT BE Imported!!!") | |
try: | |
from .mesh_inpaint_processor import meshVerticeInpaint # , meshVerticeColor | |
except: | |
print("InPaint Function CAN NOT BE Imported!!!") | |
class RenderMode(Enum): | |
"""Rendering mode enumeration.""" | |
NORMAL = "normal" | |
POSITION = "position" | |
ALPHA = "alpha" | |
UV_POS = "uvpos" | |
class ReturnType(Enum): | |
"""Return type enumeration.""" | |
TENSOR = "th" | |
NUMPY = "np" | |
PIL = "pl" | |
class TextureType(Enum): | |
"""Texture type enumeration.""" | |
DIFFUSE = "diffuse" | |
METALLIC_ROUGHNESS = "mr" | |
NORMAL = "normal" | |
class RenderConfig: | |
"""Unified rendering configuration.""" | |
elev: float = 0 | |
azim: float = 0 | |
camera_distance: Optional[float] = None | |
center: Optional[List[float]] = None | |
resolution: Optional[Union[int, Tuple[int, int]]] = None | |
bg_color: List[float] = None | |
return_type: str = "th" | |
def __post_init__(self): | |
if self.bg_color is None: | |
self.bg_color = [1, 1, 1] | |
class ViewState: | |
"""Camera view state for rendering pipeline.""" | |
proj_mat: torch.Tensor | |
mv_mat: torch.Tensor | |
pos_camera: torch.Tensor | |
pos_clip: torch.Tensor | |
resolution: Tuple[int, int] | |
def stride_from_shape(shape): | |
""" | |
Calculate stride values from a given shape for multi-dimensional indexing. | |
Args: | |
shape: Tuple or list representing tensor dimensions | |
Returns: | |
List of stride values for each dimension | |
""" | |
stride = [1] | |
for x in reversed(shape[1:]): | |
stride.append(stride[-1] * x) | |
return list(reversed(stride)) | |
def scatter_add_nd_with_count(input, count, indices, values, weights=None): | |
""" | |
Perform scatter-add operation on N-dimensional tensors with counting. | |
Args: | |
input: Input tensor [..., C] with D dimensions + C channels | |
count: Count tensor [..., 1] with D dimensions | |
indices: Index tensor [N, D] of type long | |
values: Value tensor [N, C] to scatter | |
weights: Optional weight tensor [N, C], defaults to ones if None | |
Returns: | |
Tuple of (updated_input, updated_count) tensors | |
""" | |
# input: [..., C], D dimension + C channel | |
# count: [..., 1], D dimension | |
# indices: [N, D], long | |
# values: [N, C] | |
D = indices.shape[-1] | |
C = input.shape[-1] | |
size = input.shape[:-1] | |
stride = stride_from_shape(size) | |
assert len(size) == D | |
input = input.view(-1, C) # [HW, C] | |
count = count.view(-1, 1) | |
flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1) # [N] | |
if weights is None: | |
weights = torch.ones_like(values[..., :1]) | |
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values) | |
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights) | |
return input.view(*size, C), count.view(*size, 1) | |
def linear_grid_put_2d(H, W, coords, values, return_count=False): | |
""" | |
Place values on a 2D grid using bilinear interpolation. | |
Args: | |
H: Grid height | |
W: Grid width | |
coords: Coordinate tensor [N, 2] with values in range [0, 1] | |
values: Value tensor [N, C] to place on grid | |
return_count: Whether to return count information | |
Returns: | |
2D grid tensor [H, W, C] with interpolated values, optionally with count tensor | |
""" | |
# coords: [N, 2], float in [0, 1] | |
# values: [N, C] | |
C = values.shape[-1] | |
indices = coords * torch.tensor([H - 1, W - 1], dtype=torch.float32, device=coords.device) | |
indices_00 = indices.floor().long() # [N, 2] | |
indices_00[:, 0].clamp_(0, H - 2) | |
indices_00[:, 1].clamp_(0, W - 2) | |
indices_01 = indices_00 + torch.tensor([0, 1], dtype=torch.long, device=indices.device) | |
indices_10 = indices_00 + torch.tensor([1, 0], dtype=torch.long, device=indices.device) | |
indices_11 = indices_00 + torch.tensor([1, 1], dtype=torch.long, device=indices.device) | |
h = indices[..., 0] - indices_00[..., 0].float() | |
w = indices[..., 1] - indices_00[..., 1].float() | |
w_00 = (1 - h) * (1 - w) | |
w_01 = (1 - h) * w | |
w_10 = h * (1 - w) | |
w_11 = h * w | |
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C] | |
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1] | |
weights = torch.ones_like(values[..., :1]) # [N, 1] | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1) | |
) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1) | |
) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1) | |
) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1) | |
) | |
if return_count: | |
return result, count | |
mask = count.squeeze(-1) > 0 | |
result[mask] = result[mask] / count[mask].repeat(1, C) | |
return result | |
def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=128, return_count=False): | |
""" | |
Place values on 2D grid using mipmap-based multiresolution interpolation to fill holes. | |
Args: | |
H: Grid height | |
W: Grid width | |
coords: Coordinate tensor [N, 2] with values in range [0, 1] | |
values: Value tensor [N, C] to place on grid | |
min_resolution: Minimum resolution for mipmap levels | |
return_count: Whether to return count information | |
Returns: | |
2D grid tensor [H, W, C] with filled values, optionally with count tensor | |
""" | |
# coords: [N, 2], float in [0, 1] | |
# values: [N, C] | |
C = values.shape[-1] | |
result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype) # [H, W, C] | |
count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype) # [H, W, 1] | |
cur_H, cur_W = H, W | |
while min(cur_H, cur_W) > min_resolution: | |
# try to fill the holes | |
mask = count.squeeze(-1) == 0 | |
if not mask.any(): | |
break | |
cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True) | |
result[mask] = ( | |
result[mask] | |
+ F.interpolate( | |
cur_result.permute(2, 0, 1).unsqueeze(0).contiguous(), (H, W), mode="bilinear", align_corners=False | |
) | |
.squeeze(0) | |
.permute(1, 2, 0) | |
.contiguous()[mask] | |
) | |
count[mask] = ( | |
count[mask] | |
+ F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode="bilinear", align_corners=False).view( | |
H, W, 1 | |
)[mask] | |
) | |
cur_H //= 2 | |
cur_W //= 2 | |
if return_count: | |
return result, count | |
mask = count.squeeze(-1) > 0 | |
result[mask] = result[mask] / count[mask].repeat(1, C) | |
return result | |
# ============ Core utility functions for reducing duplication ============ | |
def _normalize_image_input(image: Union[np.ndarray, torch.Tensor, Image.Image]) -> Union[np.ndarray, torch.Tensor]: | |
"""Normalize image input to consistent format.""" | |
if isinstance(image, Image.Image): | |
return np.array(image) / 255.0 | |
elif isinstance(image, torch.Tensor): | |
return image.cpu().numpy() if image.is_cuda else image | |
return image | |
def _convert_texture_format(tex: Union[np.ndarray, torch.Tensor, Image.Image], | |
texture_size: Tuple[int, int], device: str, force_set: bool = False) -> torch.Tensor: | |
"""Unified texture format conversion logic.""" | |
if not force_set: | |
if isinstance(tex, np.ndarray): | |
tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
elif isinstance(tex, torch.Tensor): | |
tex_np = tex.cpu().numpy() | |
tex = Image.fromarray((tex_np * 255).astype(np.uint8)) | |
tex = tex.resize(texture_size).convert("RGB") | |
tex = np.array(tex) / 255.0 | |
return torch.from_numpy(tex).to(device).float() | |
else: | |
if isinstance(tex, np.ndarray): | |
tex = torch.from_numpy(tex) | |
return tex.to(device).float() | |
def _format_output(image: torch.Tensor, return_type: str) -> Union[torch.Tensor, np.ndarray, Image.Image]: | |
"""Convert output to requested format.""" | |
if return_type == ReturnType.NUMPY.value: | |
return image.cpu().numpy() | |
elif return_type == ReturnType.PIL.value: | |
img_np = image.cpu().numpy() * 255 | |
return Image.fromarray(img_np.astype(np.uint8)) | |
return image | |
def _ensure_resolution_format(resolution: Optional[Union[int, Tuple[int, int]]], | |
default: Tuple[int, int]) -> Tuple[int, int]: | |
"""Ensure resolution is in (height, width) format.""" | |
if resolution is None: | |
return default | |
if isinstance(resolution, (int, float)): | |
return (int(resolution), int(resolution)) | |
return tuple(resolution) | |
def _apply_background_mask(content: torch.Tensor, visible_mask: torch.Tensor, | |
bg_color: List[float], device: str) -> torch.Tensor: | |
"""Apply background color to masked regions.""" | |
bg_tensor = torch.tensor(bg_color, dtype=torch.float32, device=device) | |
return content * visible_mask + bg_tensor * (1 - visible_mask) | |
class MeshRender: | |
def __init__( | |
self, | |
camera_distance=1.45, | |
camera_type="orth", | |
default_resolution=1024, | |
texture_size=1024, | |
use_antialias=True, | |
max_mip_level=None, | |
filter_mode="linear-mipmap-linear", | |
bake_mode="back_sample", | |
raster_mode="cr", | |
shader_type="face", | |
use_opengl=False, | |
device="cuda", | |
): | |
""" | |
Initialize mesh renderer with configurable parameters. | |
Args: | |
camera_distance: Distance from camera to object center | |
camera_type: Type of camera projection ("orth" or "perspective") | |
default_resolution: Default rendering resolution | |
texture_size: Size of texture maps | |
use_antialias: Whether to use antialiasing | |
max_mip_level: Maximum mipmap level for texture filtering | |
filter_mode: Texture filtering mode | |
bake_mode: Texture baking method ("back_sample", "linear", "mip-map") | |
raster_mode: Rasterization backend ("cr" for custom rasterizer) | |
shader_type: Shading type ("face" or "vertex") | |
use_opengl: Whether to use OpenGL backend (deprecated) | |
device: Computing device ("cuda" or "cpu") | |
""" | |
self.device = device | |
self.set_default_render_resolution(default_resolution) | |
self.set_default_texture_resolution(texture_size) | |
self.camera_distance = camera_distance | |
self.use_antialias = use_antialias | |
self.max_mip_level = max_mip_level | |
self.filter_mode = filter_mode | |
self.bake_angle_thres = 75 | |
self.set_boundary_unreliable_scale(2) | |
self.bake_mode = bake_mode | |
self.shader_type = shader_type | |
self.raster_mode = raster_mode | |
if self.raster_mode == "cr": | |
import custom_rasterizer as cr | |
self.raster = cr | |
else: | |
raise f"No raster named {self.raster_mode}" | |
if camera_type == "orth": | |
self.set_orth_scale(1.2) | |
elif camera_type == "perspective": | |
self.camera_proj_mat = get_perspective_projection_matrix( | |
49.13, self.default_resolution[1] / self.default_resolution[0], 0.01, 100.0 | |
) | |
else: | |
raise f"No camera type {camera_type}" | |
# Removed multiprocessing components for single-threaded version | |
def _create_view_state(self, config: RenderConfig) -> ViewState: | |
"""Create unified view state for rendering pipeline.""" | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=config.elev, | |
azim=config.azim, | |
camera_distance=self.camera_distance if config.camera_distance is None else config.camera_distance, | |
center=config.center, | |
) | |
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
pos_clip = transform_pos(proj, pos_camera) | |
resolution = _ensure_resolution_format(config.resolution, self.default_resolution) | |
return ViewState(proj, r_mv, pos_camera, pos_clip, resolution) | |
def _compute_face_normals(self, triangles: torch.Tensor) -> torch.Tensor: | |
"""Compute face normals from triangle vertices.""" | |
return F.normalize( | |
torch.cross( | |
triangles[:, 1, :] - triangles[:, 0, :], | |
triangles[:, 2, :] - triangles[:, 0, :], | |
dim=-1, | |
), | |
dim=-1, | |
) | |
def _get_normals_for_shading(self, view_state: ViewState, use_abs_coor: bool = False) -> torch.Tensor: | |
"""Get normals based on shader type and coordinate system.""" | |
if use_abs_coor: | |
mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :] | |
else: | |
pos_camera = view_state.pos_camera[:, :3] / view_state.pos_camera[:, 3:4] | |
mesh_triangles = pos_camera[self.pos_idx[:, :3], :] | |
face_normals = self._compute_face_normals(mesh_triangles) | |
# Common rasterization | |
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
if self.shader_type == "vertex": | |
vertex_normals = trimesh.geometry.mean_vertex_normals( | |
vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), | |
) | |
vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous() | |
normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
elif self.shader_type == "face": | |
tri_ids = rast_out[..., 3] | |
tri_ids_mask = tri_ids > 0 | |
tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out) | |
normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)] | |
return normal, rast_out | |
def _unified_render_pipeline(self, config: RenderConfig, mode: RenderMode, **kwargs) -> torch.Tensor: | |
"""Unified rendering pipeline for all render modes.""" | |
view_state = self._create_view_state(config) | |
if mode == RenderMode.ALPHA: | |
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
return rast_out[..., -1:].long() | |
elif mode == RenderMode.UV_POS: | |
return self.uv_feature_map(self.vtx_pos * 0.5 + 0.5) | |
elif mode == RenderMode.NORMAL: | |
use_abs_coor = kwargs.get('use_abs_coor', False) | |
normalize_rgb = kwargs.get('normalize_rgb', True) | |
normal, rast_out = self._get_normals_for_shading(view_state, use_abs_coor) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
result = _apply_background_mask(normal, visible_mask, config.bg_color, self.device) | |
if normalize_rgb: | |
result = (result + 1) * 0.5 | |
if self.use_antialias: | |
result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx) | |
return result[0, ...] | |
elif mode == RenderMode.POSITION: | |
rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution) | |
tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor | |
tex_position = tex_position.contiguous() | |
position, _ = self.raster_interpolate(tex_position[None, ...], rast_out, self.pos_idx) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
result = _apply_background_mask(position, visible_mask, config.bg_color, self.device) | |
if self.use_antialias: | |
result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx) | |
return result[0, ...] | |
def set_orth_scale(self, ortho_scale): | |
""" | |
Set the orthographic projection scale and update camera projection matrix. | |
Args: | |
ortho_scale: Scale factor for orthographic projection | |
""" | |
self.ortho_scale = ortho_scale | |
self.camera_proj_mat = get_orthographic_projection_matrix( | |
left=-self.ortho_scale * 0.5, | |
right=self.ortho_scale * 0.5, | |
bottom=-self.ortho_scale * 0.5, | |
top=self.ortho_scale * 0.5, | |
near=0.1, | |
far=100, | |
) | |
def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True): | |
""" | |
Rasterize triangular mesh using the configured rasterization backend. | |
Args: | |
pos: Vertex positions in clip space | |
tri: Triangle indices | |
resolution: Rendering resolution [height, width] | |
ranges: Optional rendering ranges (unused in current implementation) | |
grad_db: Whether to compute gradients (unused in current implementation) | |
Returns: | |
Tuple of (rasterization_output, gradient_info) | |
""" | |
if self.raster_mode == "cr": | |
rast_out_db = None | |
if pos.dim() == 2: | |
pos = pos.unsqueeze(0) | |
# 确保pos是float32类型 | |
if pos.dtype == torch.float64: | |
pos = pos.to(torch.float32) | |
# 确保tri是int32类型 | |
if tri.dtype == torch.int64: | |
tri = tri.to(torch.int32) | |
findices, barycentric = self.raster.rasterize(pos, tri, resolution) | |
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1) | |
rast_out = rast_out.unsqueeze(0) | |
else: | |
raise f"No raster named {self.raster_mode}" | |
return rast_out, rast_out_db | |
def raster_interpolate(self, uv, rast_out, uv_idx): | |
""" | |
Interpolate texture coordinates or vertex attributes across rasterized triangles. | |
Args: | |
uv: UV coordinates or vertex attributes to interpolate | |
rast_out: Rasterization output containing barycentric coordinates | |
uv_idx: UV or vertex indices for triangles | |
Returns: | |
Tuple of (interpolated_values, gradient_info) | |
""" | |
if self.raster_mode == "cr": | |
textd = None | |
barycentric = rast_out[0, ..., :-1] | |
findices = rast_out[0, ..., -1] | |
if uv.dim() == 2: | |
uv = uv.unsqueeze(0) | |
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx) | |
else: | |
raise f"No raster named {self.raster_mode}" | |
return textc, textd | |
def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0): | |
""" | |
Apply antialiasing to rendered colors (currently returns input unchanged). | |
Args: | |
color: Input color values | |
rast: Rasterization output | |
pos: Vertex positions | |
tri: Triangle indices | |
topology_hash: Optional topology hash for optimization | |
pos_gradient_boost: Gradient boosting factor | |
Returns: | |
Antialiased color values | |
""" | |
if self.raster_mode == "cr": | |
color = color | |
else: | |
raise f"No raster named {self.raster_mode}" | |
return color | |
def set_boundary_unreliable_scale(self, scale): | |
""" | |
Set the kernel size for boundary unreliable region detection during texture baking. | |
Args: | |
scale: Scale factor relative to 512 resolution baseline | |
""" | |
self.bake_unreliable_kernel_size = int( | |
(scale / 512) * max(self.default_resolution[0], self.default_resolution[1]) | |
) | |
def load_mesh( | |
self, | |
mesh, | |
scale_factor=1.15, | |
auto_center=True, | |
): | |
""" | |
Load mesh from file and set up rendering data structures. | |
Args: | |
mesh: Path to mesh file or mesh object | |
scale_factor: Scaling factor for mesh normalization | |
auto_center: Whether to automatically center the mesh | |
""" | |
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh) | |
self.set_mesh( | |
vtx_pos, pos_idx, vtx_uv=vtx_uv, uv_idx=uv_idx, scale_factor=scale_factor, auto_center=auto_center | |
) | |
if texture_data is not None: | |
self.set_texture(texture_data) | |
def save_mesh(self, mesh_path, downsample=False): | |
""" | |
Save current mesh with textures to file. | |
Args: | |
mesh_path: Output file path | |
downsample: Whether to downsample textures by half | |
""" | |
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh(normalize=False) | |
texture_data = self.get_texture() | |
texture_metallic, texture_roughness = self.get_texture_mr() | |
texture_normal = self.get_texture_normal() | |
if downsample: | |
texture_data = cv2.resize(texture_data, (texture_data.shape[1] // 2, texture_data.shape[0] // 2)) | |
if texture_metallic is not None: | |
texture_metallic = cv2.resize( | |
texture_metallic, (texture_metallic.shape[1] // 2, texture_metallic.shape[0] // 2) | |
) | |
if texture_roughness is not None: | |
texture_roughness = cv2.resize( | |
texture_roughness, (texture_roughness.shape[1] // 2, texture_roughness.shape[0] // 2) | |
) | |
if texture_normal is not None: | |
texture_normal = cv2.resize( | |
texture_normal, (texture_normal.shape[1] // 2, texture_normal.shape[0] // 2) | |
) | |
save_mesh( | |
mesh_path, | |
vtx_pos, | |
pos_idx, | |
vtx_uv, | |
uv_idx, | |
texture_data, | |
metallic=texture_metallic, | |
roughness=texture_roughness, | |
normal=texture_normal, | |
) | |
def set_mesh(self, vtx_pos, pos_idx, vtx_uv=None, uv_idx=None, scale_factor=1.15, auto_center=True): | |
""" | |
Set mesh geometry data and perform coordinate transformations. | |
Args: | |
vtx_pos: Vertex positions [N, 3] | |
pos_idx: Triangle vertex indices [F, 3] | |
vtx_uv: UV coordinates [N, 2], optional | |
uv_idx: Triangle UV indices [F, 3], optional | |
scale_factor: Scaling factor for mesh normalization | |
auto_center: Whether to automatically center and scale the mesh | |
""" | |
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device) | |
self.pos_idx = torch.from_numpy(pos_idx).to(self.device) | |
# 确保顶点位置是float32类型 | |
if self.vtx_pos.dtype == torch.float64: | |
self.vtx_pos = self.vtx_pos.to(torch.float32) | |
# 确保索引类型为int32 | |
if self.pos_idx.dtype == torch.int64: | |
self.pos_idx = self.pos_idx.to(torch.int32) | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device) | |
self.uv_idx = torch.from_numpy(uv_idx).to(self.device) | |
# 确保UV坐标是float32类型 | |
if self.vtx_uv.dtype == torch.float64: | |
self.vtx_uv = self.vtx_uv.to(torch.float32) | |
# 确保UV索引类型为int32 | |
if self.uv_idx.dtype == torch.int64: | |
self.uv_idx = self.uv_idx.to(torch.int32) | |
else: | |
self.vtx_uv = None | |
self.uv_idx = None | |
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]] | |
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]] | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1] | |
pass | |
if auto_center: | |
max_bb = (self.vtx_pos - 0).max(0)[0] | |
min_bb = (self.vtx_pos - 0).min(0)[0] | |
center = (max_bb + min_bb) / 2 | |
scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0 | |
self.vtx_pos = (self.vtx_pos - center) * (scale_factor / float(scale)) | |
self.scale_factor = scale_factor | |
self.mesh_normalize_scale_factor = scale_factor / float(scale) | |
self.mesh_normalize_scale_center = center.unsqueeze(0).cpu().numpy() | |
else: | |
self.scale_factor = 1.0 | |
self.mesh_normalize_scale_factor = 1.0 | |
self.mesh_normalize_scale_center = np.array([[0, 0, 0]]) | |
if uv_idx is not None: | |
self.extract_textiles() | |
def _set_texture_unified(self, tex: Union[np.ndarray, torch.Tensor, Image.Image], | |
texture_type: TextureType, force_set: bool = False): | |
"""Unified texture setting method.""" | |
converted_tex = _convert_texture_format(tex, self.texture_size, self.device, force_set) | |
if texture_type == TextureType.DIFFUSE: | |
self.tex = converted_tex | |
elif texture_type == TextureType.METALLIC_ROUGHNESS: | |
self.tex_mr = converted_tex | |
elif texture_type == TextureType.NORMAL: | |
self.tex_normalMap = converted_tex | |
def set_texture(self, tex, force_set=False): | |
"""Set the main diffuse texture for the mesh.""" | |
self._set_texture_unified(tex, TextureType.DIFFUSE, force_set) | |
def set_texture_mr(self, mr, force_set=False): | |
"""Set metallic-roughness texture for PBR rendering.""" | |
self._set_texture_unified(mr, TextureType.METALLIC_ROUGHNESS, force_set) | |
def set_texture_normal(self, normal, force_set=False): | |
"""Set normal map texture for surface detail.""" | |
self._set_texture_unified(normal, TextureType.NORMAL, force_set) | |
def set_default_render_resolution(self, default_resolution): | |
""" | |
Set the default resolution for rendering operations. | |
Args: | |
default_resolution: Resolution as int (square) or tuple (height, width) | |
""" | |
if isinstance(default_resolution, int): | |
default_resolution = (default_resolution, default_resolution) | |
self.default_resolution = default_resolution | |
def set_default_texture_resolution(self, texture_size): | |
""" | |
Set the default texture resolution for UV mapping operations. | |
Args: | |
texture_size: Texture size as int (square) or tuple (height, width) | |
""" | |
if isinstance(texture_size, int): | |
texture_size = (texture_size, texture_size) | |
self.texture_size = texture_size | |
def get_face_num(self): | |
""" | |
Get the number of triangular faces in the mesh. | |
Returns: | |
Number of faces as integer | |
""" | |
return self.pos_idx.shape[0] | |
def get_vertex_num(self): | |
""" | |
Get the number of vertices in the mesh. | |
Returns: | |
Number of vertices as integer | |
""" | |
return self.vtx_pos.shape[0] | |
def get_face_areas(self, from_one_index=False): | |
""" | |
Calculate the area of each triangular face in the mesh. | |
Args: | |
from_one_index: If True, insert zero at beginning for 1-indexed face IDs | |
Returns: | |
Numpy array of face areas | |
""" | |
v0 = self.vtx_pos[self.pos_idx[:, 0], :] | |
v1 = self.vtx_pos[self.pos_idx[:, 1], :] | |
v2 = self.vtx_pos[self.pos_idx[:, 2], :] | |
# 计算两个边向量 | |
edge1 = v1 - v0 | |
edge2 = v2 - v0 | |
# 计算叉积的模长的一半即为面积 | |
areas = torch.norm(torch.cross(edge1, edge2, dim=-1), dim=-1) * 0.5 | |
areas = areas.cpu().numpy() | |
if from_one_index: | |
# 在数组前面插入一个0,因为三角片索引是从1开始的 | |
areas = np.insert(areas, 0, 0) | |
return areas | |
def get_mesh(self, normalize=True): | |
""" | |
Get mesh geometry with optional coordinate denormalization. | |
Args: | |
normalize: Whether to keep normalized coordinates (True) or restore original scale (False) | |
Returns: | |
Tuple of (vertex_positions, face_indices, uv_coordinates, uv_indices) | |
""" | |
vtx_pos = self.vtx_pos.cpu().numpy() | |
pos_idx = self.pos_idx.cpu().numpy() | |
vtx_uv = self.vtx_uv.cpu().numpy() | |
uv_idx = self.uv_idx.cpu().numpy() | |
# 坐标变换的逆变换 | |
if not normalize: | |
vtx_pos = vtx_pos / self.mesh_normalize_scale_factor | |
vtx_pos = vtx_pos + self.mesh_normalize_scale_center | |
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]] | |
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]] | |
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1] | |
return vtx_pos, pos_idx, vtx_uv, uv_idx | |
def get_texture(self): | |
""" | |
Get the current diffuse texture as numpy array. | |
Returns: | |
Texture as numpy array in range [0, 1] | |
""" | |
return self.tex.cpu().numpy() | |
def get_texture_mr(self): | |
""" | |
Get metallic and roughness textures as separate channels. | |
Returns: | |
Tuple of (metallic_texture, roughness_texture) as numpy arrays, or (None, None) if not set | |
""" | |
metallic, roughness = None, None | |
if hasattr(self, "tex_mr"): | |
mr = self.tex_mr.cpu().numpy() | |
metallic = np.repeat(mr[:, :, 0:1], repeats=3, axis=2) | |
roughness = np.repeat(mr[:, :, 1:2], repeats=3, axis=2) | |
return metallic, roughness | |
def get_texture_normal(self): | |
""" | |
Get the normal map texture as numpy array. | |
Returns: | |
Normal map as numpy array, or None if not set | |
""" | |
normal = None | |
if hasattr(self, "tex_normalMap"): | |
normal = self.tex_normalMap.cpu().numpy() | |
return normal | |
def to(self, device): | |
""" | |
Move all tensor attributes to the specified device. | |
Args: | |
device: Target device ("cuda", "cpu", etc.) | |
""" | |
self.device = device | |
for attr_name in dir(self): | |
attr_value = getattr(self, attr_name) | |
if isinstance(attr_value, torch.Tensor): | |
setattr(self, attr_name, attr_value.to(self.device)) | |
def color_rgb_to_srgb(self, image): | |
""" | |
Convert RGB color values to sRGB color space using gamma correction. | |
Args: | |
image: Input image as PIL Image, numpy array, or torch tensor | |
Returns: | |
sRGB corrected image in same format as input | |
""" | |
if isinstance(image, Image.Image): | |
image_rgb = torch.tesnor(np.array(image) / 255.0).float().to(self.device) | |
elif isinstance(image, np.ndarray): | |
image_rgb = torch.tensor(image).float() | |
else: | |
image_rgb = image.to(self.device) | |
image_srgb = torch.where( | |
image_rgb <= 0.0031308, 12.92 * image_rgb, 1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055 | |
) | |
if isinstance(image, Image.Image): | |
image_srgb = Image.fromarray((image_srgb.cpu().numpy() * 255).astype(np.uint8)) | |
elif isinstance(image, np.ndarray): | |
image_srgb = image_srgb.cpu().numpy() | |
else: | |
image_srgb = image_srgb.to(image.device) | |
return image_srgb | |
def extract_textiles(self): | |
""" | |
Extract texture-space position and normal information by rasterizing | |
the mesh in UV coordinate space. Creates texture-space geometry mappings. | |
""" | |
vnum = self.vtx_uv.shape[0] | |
vtx_uv = torch.cat( | |
(self.vtx_uv, torch.zeros_like(self.vtx_uv[:, 0:1]), torch.ones_like(self.vtx_uv[:, 0:1])), axis=1 | |
) | |
vtx_uv = vtx_uv.view(1, vnum, 4) * 2 - 1 | |
rast_out, rast_out_db = self.raster_rasterize(vtx_uv, self.uv_idx, resolution=self.texture_size) | |
position, _ = self.raster_interpolate(self.vtx_pos, rast_out, self.pos_idx) | |
v0 = self.vtx_pos[self.pos_idx[:, 0], :] | |
v1 = self.vtx_pos[self.pos_idx[:, 1], :] | |
v2 = self.vtx_pos[self.pos_idx[:, 2], :] | |
face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1) | |
vertex_normals = trimesh.geometry.mean_vertex_normals( | |
vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), | |
) | |
vertex_normals = torch.from_numpy(vertex_normals).to(self.vtx_pos).contiguous() | |
position_normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ..., 0] | |
position = position[0] | |
position_normal = position_normal[0] | |
tri_ids = rast_out[0, ..., 3] | |
tri_ids_mask = tri_ids > 0 | |
tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
position_normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[ | |
tri_ids[tri_ids_mask].view(-1) | |
] | |
row = torch.arange(position.shape[0]).to(visible_mask.device) | |
col = torch.arange(position.shape[1]).to(visible_mask.device) | |
grid_i, grid_j = torch.meshgrid(row, col, indexing="ij") | |
mask = visible_mask.reshape(-1) > 0 | |
position = position.reshape(-1, 3)[mask] | |
position_normal = position_normal.reshape(-1, 3)[mask] | |
position = torch.cat((position, torch.ones_like(position[:, :1])), axis=-1) | |
grid = torch.stack((grid_i, grid_j), -1).reshape(-1, 2)[mask] | |
texture_indices = ( | |
torch.ones(self.texture_size[0], self.texture_size[1], device=self.device, dtype=torch.long) * -1 | |
) | |
texture_indices.view(-1)[grid[:, 0] * self.texture_size[1] + grid[:, 1]] = torch.arange(grid.shape[0]).to( | |
device=self.device, dtype=torch.long | |
) | |
self.tex_position = position | |
self.tex_normal = position_normal | |
self.tex_grid = grid | |
self.texture_indices = texture_indices | |
def render_normal(self, elev, azim, camera_distance=None, center=None, resolution=None, | |
bg_color=[1, 1, 1], use_abs_coor=False, normalize_rgb=True, return_type="th"): | |
"""Render surface normals of the mesh from specified viewpoint.""" | |
config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type) | |
image = self._unified_render_pipeline(config, RenderMode.NORMAL, | |
use_abs_coor=use_abs_coor, normalize_rgb=normalize_rgb) | |
return _format_output(image, return_type) | |
def convert_normal_map(self, image): | |
""" | |
Convert normal map from standard format to renderer's coordinate system. | |
Applies coordinate transformations for proper normal interpretation. | |
Args: | |
image: Input normal map as PIL Image or numpy array | |
Returns: | |
Converted normal map as PIL Image | |
""" | |
# blue is front, red is left, green is top | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
mask = (image == [255, 255, 255]).all(axis=-1) | |
image = (image / 255.0) * 2.0 - 1.0 | |
image[..., [1]] = -image[..., [1]] | |
image[..., [1, 2]] = image[..., [2, 1]] | |
image[..., [0]] = -image[..., [0]] | |
image = (image + 1.0) * 0.5 | |
image = (image * 255).astype(np.uint8) | |
image[mask] = [127, 127, 255] | |
return Image.fromarray(image) | |
def render_position(self, elev, azim, camera_distance=None, center=None, resolution=None, | |
bg_color=[1, 1, 1], return_type="th"): | |
"""Render world-space positions of visible mesh surface points.""" | |
config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type) | |
image = self._unified_render_pipeline(config, RenderMode.POSITION) | |
if return_type == ReturnType.PIL.value: | |
image = image.squeeze(-1).cpu().numpy() * 255 | |
return Image.fromarray(image.astype(np.uint8)) | |
return _format_output(image, return_type) | |
def render_uvpos(self, return_type="th"): | |
"""Render vertex positions mapped to UV texture space.""" | |
config = RenderConfig(return_type=return_type) | |
image = self._unified_render_pipeline(config, RenderMode.UV_POS) | |
return _format_output(image, return_type) | |
def render_alpha(self, elev, azim, camera_distance=None, center=None, resolution=None, return_type="th"): | |
"""Render binary alpha mask indicating visible mesh regions.""" | |
config = RenderConfig(elev, azim, camera_distance, center, resolution, return_type=return_type) | |
image = self._unified_render_pipeline(config, RenderMode.ALPHA) | |
if return_type == ReturnType.PIL.value: | |
raise Exception("PIL format not supported for alpha rendering") | |
return _format_output(image, return_type) | |
def uv_feature_map(self, vert_feat, bg=None): | |
""" | |
Map per-vertex features to UV texture space using mesh topology. | |
Args: | |
vert_feat: Per-vertex feature tensor [N, C] | |
bg: Background value for unmapped regions (optional) | |
Returns: | |
Feature map in UV texture space [H, W, C] | |
""" | |
vtx_uv = self.vtx_uv * 2 - 1.0 | |
vtx_uv = torch.cat([vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0) | |
vtx_uv[..., -1] = 1 | |
uv_idx = self.uv_idx | |
rast_out, rast_out_db = self.raster_rasterize(vtx_uv, uv_idx, resolution=self.texture_size) | |
feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx) | |
feat_map = feat_map[0, ...] | |
if bg is not None: | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
feat_map[visible_mask == 0] = bg | |
return feat_map | |
def render_sketch_from_geometry(self, normal_image, depth_image): | |
""" | |
Generate sketch-style edge image from rendered normal and depth maps. | |
Args: | |
normal_image: Rendered normal map tensor | |
depth_image: Rendered depth map tensor | |
Returns: | |
Binary edge sketch image as tensor | |
""" | |
normal_image_np = normal_image.cpu().numpy() | |
depth_image_np = depth_image.cpu().numpy() | |
normal_image_np = (normal_image_np * 255).astype(np.uint8) | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY) | |
normal_edges = cv2.Canny(normal_image_np, 80, 150) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
combined_edges = np.maximum(normal_edges, depth_edges) | |
sketch_image = torch.from_numpy(combined_edges).to(normal_image.device).float() / 255.0 | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def render_sketch_from_depth(self, depth_image): | |
""" | |
Generate sketch-style edge image from depth map using edge detection. | |
Args: | |
depth_image: Input depth map tensor | |
Returns: | |
Binary edge sketch image as tensor | |
""" | |
depth_image_np = depth_image.cpu().numpy() | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
combined_edges = depth_edges | |
sketch_image = torch.from_numpy(combined_edges).to(depth_image.device).float() / 255.0 | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def back_project(self, image, elev, azim, camera_distance=None, center=None, method=None): | |
""" | |
Back-project a rendered image onto the mesh's UV texture space. | |
Handles visibility, viewing angle, and boundary detection for texture baking. | |
Args: | |
image: Input image to back-project (PIL Image, numpy array, or tensor) | |
elev: Camera elevation angle in degrees used for rendering | |
azim: Camera azimuth angle in degrees used for rendering | |
camera_distance: Camera distance (uses default if None) | |
center: Camera focus center (uses origin if None) | |
method: Back-projection method ("linear", "mip-map", "back_sample", uses default if None) | |
Returns: | |
Tuple of (texture, cosine_map, boundary_map) tensors in UV space | |
""" | |
if isinstance(image, Image.Image): | |
image = torch.tensor(np.array(image) / 255.0) | |
elif isinstance(image, np.ndarray): | |
image = torch.tensor(image) | |
if image.dim() == 2: | |
image = image.unsqueeze(-1) | |
image = image.float().to(self.device) | |
resolution = image.shape[:2] | |
channel = image.shape[-1] | |
texture = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device) | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=elev, | |
azim=azim, | |
camera_distance=self.camera_distance if camera_distance is None else camera_distance, | |
center=center, | |
) | |
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
pos_clip = transform_pos(proj, pos_camera) | |
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
v0 = pos_camera[self.pos_idx[:, 0], :] | |
v1 = pos_camera[self.pos_idx[:, 1], :] | |
v2 = pos_camera[self.pos_idx[:, 2], :] | |
face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1) | |
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous() | |
rast_out, rast_out_db = self.raster_rasterize(pos_clip, self.pos_idx, resolution=resolution) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
if self.shader_type == "vertex": | |
vertex_normals = trimesh.geometry.mean_vertex_normals( | |
vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), | |
) | |
vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous() | |
normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx) | |
elif self.shader_type == "face": | |
tri_ids = rast_out[..., 3] | |
tri_ids_mask = tri_ids > 0 | |
tri_ids = ((tri_ids - 1) * tri_ids_mask).long() | |
normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out) | |
normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)] | |
normal = normal[0, ...] | |
uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx) | |
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx) | |
depth = depth[0, ...] | |
depth_max, depth_min = depth[visible_mask > 0].max(), depth[visible_mask > 0].min() | |
depth_normalized = (depth - depth_min) / (depth_max - depth_min) | |
depth_image = depth_normalized * visible_mask # Mask out background. | |
sketch_image = self.render_sketch_from_depth(depth_image) | |
lookat = torch.tensor([[0, 0, -1]], device=self.device) | |
cos_image = torch.nn.functional.cosine_similarity(lookat, normal.view(-1, 3)) | |
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1) | |
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi) | |
cos_image[cos_image < cos_thres] = 0 | |
# shrink | |
if self.bake_unreliable_kernel_size > 0: | |
kernel_size = self.bake_unreliable_kernel_size * 2 + 1 | |
kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=torch.float32).to(sketch_image.device) | |
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float() | |
visible_mask = F.conv2d(1.0 - visible_mask, kernel, padding=kernel_size // 2) | |
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化 | |
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0) | |
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0) | |
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2) | |
sketch_image = (sketch_image > 0).float() # 二值化 | |
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0) | |
visible_mask = visible_mask * (sketch_image < 0.5) | |
cos_image[visible_mask == 0] = 0 | |
method = self.bake_mode if method is None else method | |
if method == "linear": | |
proj_mask = (visible_mask != 0).view(-1) | |
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask] | |
texture = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image) | |
cos_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image) | |
boundary_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image) | |
elif method == "mip-map": | |
proj_mask = (visible_mask != 0).view(-1) | |
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
texture = mipmap_linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image, min_resolution=128 | |
) | |
cos_map = mipmap_linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image, min_resolution=256 | |
) | |
if self.vtx_map is not None: | |
vertex_normals = vertex_normals[self.vtx_map, :] | |
normal_map = self.uv_feature_map(vertex_normals) | |
cos_map_uv = torch.nn.functional.cosine_similarity(lookat, normal_map.view(-1, 3)) # .abs() | |
cos_map_uv = cos_map_uv.view(1, 1, normal_map.shape[0], normal_map.shape[1]) | |
cos_map_uv = torch.nn.functional.max_pool2d(cos_map_uv, kernel_size=3, stride=1, padding=1) | |
cos_map_uv = cos_map_uv.reshape(self.texture_size[0], self.texture_size[1], 1) | |
cos_map_uv[cos_map_uv < cos_thres] = 0 | |
# cos_map = torch.min(cos_map, cos_map_uv) | |
cos_map[cos_map_uv < cos_thres] = 0 | |
elif method == "back_sample": | |
img_proj = torch.from_numpy( | |
np.array(((proj[0, 0], 0, 0, 0), (0, proj[1, 1], 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) | |
).to(self.tex_position) | |
w2c = torch.from_numpy(r_mv).to(self.tex_position) | |
v_proj = self.tex_position @ w2c.T @ img_proj | |
inner_mask = (v_proj[:, 0] <= 1.0) & (v_proj[:, 0] >= -1.0) & (v_proj[:, 1] <= 1.0) & (v_proj[:, 1] >= -1.0) | |
inner_valid_idx = torch.where(inner_mask)[0].long() | |
img_x = torch.clamp( | |
((v_proj[:, 0].clamp(-1, 1) * 0.5 + 0.5) * (resolution[0])).long(), 0, resolution[0] - 1 | |
) | |
img_y = torch.clamp( | |
((v_proj[:, 1].clamp(-1, 1) * 0.5 + 0.5) * (resolution[1])).long(), 0, resolution[1] - 1 | |
) | |
indices = img_y * resolution[0] + img_x | |
sampled_z = depth.reshape(-1)[indices] | |
sampled_m = visible_mask.reshape(-1)[indices] | |
v_z = v_proj[:, 2] | |
sampled_w = cos_image.reshape(-1)[indices] | |
depth_thres = 3e-3 | |
# valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) * (sampled_m*sampled_w>0))[0] | |
valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) & (sampled_m * sampled_w > 0))[0] | |
intersection_mask = torch.isin(valid_idx, inner_valid_idx) | |
valid_idx = valid_idx[intersection_mask].to(inner_valid_idx) | |
indices = indices[valid_idx] | |
sampled_b = sketch_image.reshape(-1)[indices] | |
sampled_w = sampled_w[valid_idx] | |
# bilinear sampling rgb | |
wx = ((v_proj[:, 0] * 0.5 + 0.5) * resolution[0] - img_x)[valid_idx].reshape(-1, 1) | |
wy = ((v_proj[:, 1] * 0.5 + 0.5) * resolution[1] - img_y)[valid_idx].reshape(-1, 1) | |
img_x = img_x[valid_idx] | |
img_y = img_y[valid_idx] | |
img_x_r = torch.clamp(img_x + 1, 0, resolution[0] - 1) | |
img_y_r = torch.clamp(img_y + 1, 0, resolution[1] - 1) | |
indices_lr = img_y * resolution[0] + img_x_r | |
indices_rl = img_y_r * resolution[0] + img_x | |
indices_rr = img_y_r * resolution[0] + img_x_r | |
rgb = image.reshape(-1, channel) | |
sampled_rgb = (rgb[indices] * (1 - wx) + rgb[indices_lr] * wx) * (1 - wy) + ( | |
rgb[indices_rl] * (1 - wx) + rgb[indices_rr] * wx | |
) * wy | |
# return sampled_rgb, sampled_w, sampled_b, valid_idx | |
texture = torch.zeros(self.texture_size[0], self.texture_size[1], channel, device=self.device).reshape( | |
-1, channel | |
) | |
cos_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1) | |
boundary_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1) | |
valid_tex_indices = self.tex_grid[valid_idx, 0] * self.texture_size[1] + self.tex_grid[valid_idx, 1] | |
texture[valid_tex_indices, :] = sampled_rgb | |
cos_map[valid_tex_indices] = sampled_w | |
boundary_map[valid_tex_indices] = sampled_b | |
texture = texture.view(self.texture_size[0], self.texture_size[1], channel) | |
cos_map = cos_map.view(self.texture_size[0], self.texture_size[1], 1) | |
# texture = torch.clamp(texture,0,1) | |
else: | |
raise f"No bake mode {method}" | |
return texture, cos_map, boundary_map | |
def bake_texture(self, colors, elevs, azims, camera_distance=None, center=None, exp=6, weights=None): | |
""" | |
Bake multiple view images into a single UV texture using weighted blending. | |
Args: | |
colors: List of input images (tensors, numpy arrays, or PIL Images) | |
elevs: List of elevation angles for each view | |
azims: List of azimuth angles for each view | |
camera_distance: Camera distance (uses default if None) | |
center: Camera focus center (uses origin if None) | |
exp: Exponent for cosine weighting (higher values favor front-facing views) | |
weights: Optional per-view weights (defaults to 1.0 for all views) | |
Returns: | |
Tuple of (merged_texture, trust_map) tensors in UV space | |
""" | |
if isinstance(colors, torch.Tensor): | |
colors = [colors[i, ...].float().permute(1, 2, 0) for i in range(colors.shape[0])] | |
else: | |
for i in range(len(colors)): | |
if isinstance(colors[i], Image.Image): | |
colors[i] = torch.tensor(np.array(colors[i]) / 255.0, device=self.device).float() | |
if weights is None: | |
weights = [1.0 for _ in range(len(colors))] | |
textures = [] | |
cos_maps = [] | |
for color, elev, azim, weight in zip(colors, elevs, azims, weights): | |
texture, cos_map, _ = self.back_project(color, elev, azim, camera_distance, center) | |
cos_map = weight * (cos_map**exp) | |
textures.append(texture) | |
cos_maps.append(cos_map) | |
texture_merge, trust_map_merge = self.fast_bake_texture(textures, cos_maps) | |
return texture_merge, trust_map_merge | |
def fast_bake_texture(self, textures, cos_maps): | |
""" | |
Efficiently merge multiple textures using cosine-weighted blending. | |
Optimizes by skipping views that don't contribute new information. | |
Args: | |
textures: List of texture tensors to merge | |
cos_maps: List of corresponding cosine weight maps | |
Returns: | |
Tuple of (merged_texture, valid_mask) tensors | |
""" | |
channel = textures[0].shape[-1] | |
texture_merge = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device) | |
for texture, cos_map in zip(textures, cos_maps): | |
view_sum = (cos_map > 0).sum() | |
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum() | |
if painted_sum / view_sum > 0.99: | |
continue | |
texture_merge += texture * cos_map | |
trust_map_merge += cos_map | |
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8) | |
return texture_merge, trust_map_merge > 1e-8 | |
def uv_inpaint(self, texture, mask, vertex_inpaint=True, method="NS", return_float=False): | |
""" | |
Inpaint missing regions in UV texture using mesh-aware and traditional methods. | |
Args: | |
texture: Input texture as tensor, numpy array, or PIL Image | |
mask: Binary mask indicating regions to inpaint (1 = keep, 0 = inpaint) | |
vertex_inpaint: Whether to use mesh vertex connectivity for inpainting | |
method: Inpainting method ("NS" for Navier-Stokes) | |
return_float: Whether to return float values (False returns uint8) | |
Returns: | |
Inpainted texture as numpy array | |
""" | |
if isinstance(texture, torch.Tensor): | |
texture_np = texture.cpu().numpy() | |
elif isinstance(texture, np.ndarray): | |
texture_np = texture | |
elif isinstance(texture, Image.Image): | |
texture_np = np.array(texture) / 255.0 | |
if isinstance(mask, torch.Tensor): | |
mask = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) | |
if vertex_inpaint: | |
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh() | |
texture_np, mask = meshVerticeInpaint(texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx) | |
if method == "NS": | |
texture_np = cv2.inpaint((texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS) | |
assert return_float == False | |
return texture_np | |