Hunyuan3D-2.1 / hy3dshape /tools /watertight /watertight_and_sample.py
Huiwenshi's picture
Upload folder using huggingface_hub
600759a verified
raw
history blame
8.81 kB
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import argparse
import igl
import numpy as np
import os
from scipy.stats import truncnorm
import trimesh
def random_sample_pointcloud(mesh, num = 30000):
points, face_idx = mesh.sample(num, return_index=True)
normals = mesh.face_normals[face_idx]
rng = np.random.default_rng()
index = rng.choice(num, num, replace=False)
return points[index], normals[index]
def sharp_sample_pointcloud(mesh, num=16384):
V = mesh.vertices
N = mesh.face_normals
VN = mesh.vertex_normals
F = mesh.faces
VN2 = np.ones(V.shape[0])
for i in range(3):
dot = np.stack((VN2[F[:,i]], np.sum(VN[F[:,i]] * N, axis=-1)), axis=-1)
VN2[F[:,i]] = np.min(dot, axis=-1)
sharp_mask = VN2<0.985
# collect edge
edge_a = np.concatenate((F[:,0],F[:,1],F[:,2]))
edge_b = np.concatenate((F[:,1],F[:,2],F[:,0]))
sharp_edge = ((sharp_mask[edge_a] * sharp_mask[edge_b]))
edge_a = edge_a[sharp_edge>0]
edge_b = edge_b[sharp_edge>0]
sharp_verts_a = V[edge_a]
sharp_verts_b = V[edge_b]
sharp_verts_an = VN[edge_a]
sharp_verts_bn = VN[edge_b]
weights = np.linalg.norm(sharp_verts_b - sharp_verts_a, axis=-1)
weights /= np.sum(weights)
random_number = np.random.rand(num)
w = np.random.rand(num,1)
index = np.searchsorted(weights.cumsum(), random_number)
samples = w * sharp_verts_a[index] + (1 - w) * sharp_verts_b[index]
normals = w * sharp_verts_an[index] + (1 - w) * sharp_verts_bn[index]
return samples, normals
def sample_sdf(mesh, random_surface, sharp_surface):
n_volume_points = sharp_surface.shape[0] * 2
vol_points = (np.random.rand(n_volume_points, 3) - 0.5) * 2 * 1.05
a, b = -0.25, 0.25
mu = 0
# get near points (add offset on surface points)
offset1 = truncnorm.rvs((a - mu) / 0.005, (b - mu) / 0.005, loc=mu, scale=0.005, size=(len(random_surface), 3))
offset2 = truncnorm.rvs((a - mu) / 0.05, (b - mu) / 0.05, loc=mu, scale=0.05, size=(len(random_surface), 3))
random_near_points = np.concatenate([
random_surface + offset1,
random_surface + offset2
], axis=0)
unit_num = len(sharp_surface) // 6
sharp_near_points = np.concatenate([
sharp_surface[:unit_num] + np.random.normal(scale=0.001, size=(unit_num, 3)),
sharp_surface[unit_num:unit_num*2] + np.random.normal(scale=0.003, size=(unit_num,3)),
sharp_surface[unit_num*2:unit_num*3] + np.random.normal(scale=0.06, size=(unit_num,3)),
sharp_surface[unit_num*3:unit_num*4] + np.random.normal(scale=0.01, size=(unit_num,3)),
sharp_surface[unit_num*4:unit_num*5] + np.random.normal(scale=0.02, size=(unit_num,3)),
sharp_surface[unit_num*5:] + np.random.normal(scale=0.04, size=(len(sharp_surface)-5*unit_num,3))
], axis=0)
np.random.shuffle(random_near_points)
np.random.shuffle(sharp_near_points)
sign_type = igl.SIGNED_DISTANCE_TYPE_FAST_WINDING_NUMBER
try:
vol_sdf, I, C = igl.signed_distance(
vol_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
vol_sdf, I, C = igl.signed_distance(
vol_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
try:
random_near_sdf, I, C = igl.signed_distance(
random_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
random_near_sdf, I, C = igl.signed_distance(
random_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
try:
sharp_near_sdf, I, C = igl.signed_distance(
sharp_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False,
sign_type=sign_type)
except:
sharp_near_sdf, I, C = igl.signed_distance(
sharp_near_points.astype(np.float32),
mesh.vertices, mesh.faces,
return_normals=False)
vol_label = -vol_sdf
random_near_label = -random_near_sdf
sharp_near_label = -sharp_near_sdf
data = {
"vol_points": vol_points.astype(np.float16),
"vol_label": vol_label.astype(np.float16),
"random_near_points": random_near_points.astype(np.float16),
"random_near_label": random_near_label.astype(np.float16),
"sharp_near_points": sharp_near_points.astype(np.float16),
"sharp_near_label": sharp_near_label.astype(np.float16)
}
return data
def SampleMesh(V, F):
mesh = trimesh.Trimesh(vertices=V, faces=F)
area = mesh.area
sample_num = 499712//4
random_surface, random_normal = random_sample_pointcloud(mesh, num=sample_num)
random_sharp_surface, sharp_normal = sharp_sample_pointcloud(mesh, num=sample_num)
#save_surface
surface = np.concatenate((random_surface, random_normal), axis = 1).astype(np.float16)
sharp_surface = np.concatenate((random_sharp_surface, sharp_normal), axis=1).astype(np.float16)
surface_data = {
"random_surface": surface,
"sharp_surface": sharp_surface,
}
sdf_data = sample_sdf(mesh, random_surface, random_sharp_surface)
return surface_data, sdf_data
def normalize_to_unit_box(V):
"""
Normalize the vertices V to fit inside a unit bounding box [0,1]^3.
V: (n,3) numpy array of vertex positions.
Returns: normalized V
"""
V_min = V.min(axis=0)
V_max = V.max(axis=0)
scale = (V_max - V_min).max() * 1.01
V_normalized = (V - V_min) / scale
return V_normalized
# Given: V (n x 3 array of vertices), F (m x 3 array of faces)
# Parameters epsilon/grid_res
def Watertight(V, F, epsilon = 2.0/256, grid_res = 256):
# Compute bounding box
min_corner = V.min(axis=0)
max_corner = V.max(axis=0)
padding = 0.05 * (max_corner - min_corner)
min_corner -= padding
max_corner += padding
# Create a uniform grid
x = np.linspace(min_corner[0], max_corner[0], grid_res)
y = np.linspace(min_corner[1], max_corner[1], grid_res)
z = np.linspace(min_corner[2], max_corner[2], grid_res)
X, Y, Z = np.meshgrid(x, y, z, indexing='ij')
grid_points = np.vstack([X.ravel(), Y.ravel(), Z.ravel()]).T
# Compute SDF at grid points using igl.signed_distance with pseudo normals
sdf, _, _ = igl.signed_distance(
grid_points, V, F, sign_type=igl.SIGNED_DISTANCE_TYPE_PSEUDONORMAL
)
# igl.marching_cubes returns (vertices, faces)
mc_verts, mc_faces = igl.marching_cubes(epsilon - np.abs(sdf), grid_points, grid_res, grid_res, grid_res, 0.0)
# mc_verts: (k x 3) array of vertices of the epsilon contour
# mc_faces: (l x 3) array of faces of the epsilon contour
return mc_verts, mc_faces
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process an OBJ file and output surface and SDF data.')
parser.add_argument('--input_obj', type=str, help='Path to the input OBJ file')
parser.add_argument('--output_prefix', type=str, default=None,
help='Base name for output files (default: input OBJ filename without extension)')
args = parser.parse_args()
input_obj = args.input_obj
name = args.output_prefix
V, F = igl.read_triangle_mesh(input_obj)
V = normalize_to_unit_box(V)
mc_verts, mc_faces = Watertight(V, F)
surface_data, sdf_data = SampleMesh(mc_verts, mc_faces)
parent_folder = os.path.dirname(args.output_prefix)
os.makedirs(parent_folder, exist_ok=True)
export_surface = f'{name}_surface.npz'
np.savez(export_surface, **surface_data)
export_sdf = f'{name}_sdf.npz'
np.savez(export_sdf, **sdf_data)
igl.write_obj(f'{name}_watertight.obj', mc_verts, mc_faces)