File size: 35,065 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.


import argparse, sys, os, math, re, glob
from typing import *
import bpy
from mathutils import Vector, Matrix
import numpy as np
import json
import glob
import random
import shutil
import mathutils
import cv2

"""=============== BLENDER ==============="""

IMPORT_FUNCTIONS: Dict[str, Callable] = {
    "obj": bpy.ops.import_scene.obj,
    "glb": bpy.ops.import_scene.gltf,
    "gltf": bpy.ops.import_scene.gltf,
    "usd": bpy.ops.import_scene.usd,
    "fbx": bpy.ops.import_scene.fbx,
    "stl": bpy.ops.import_mesh.stl,
    "usda": bpy.ops.import_scene.usda,
    "dae": bpy.ops.wm.collada_import,
    "ply": bpy.ops.import_mesh.ply,
    "abc": bpy.ops.wm.alembic_import,
    "blend": bpy.ops.wm.append,
}

EXT = {
    'PNG': 'png',
    'JPEG': 'jpg',
    'OPEN_EXR': 'exr',
    'TIFF': 'tiff',
    'BMP': 'bmp',
    'HDR': 'hdr',
    'TARGA': 'tga'
}

PRIMES = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53]

def radical_inverse(base, n):
    val = 0
    inv_base = 1.0 / base
    inv_base_n = inv_base
    while n > 0:
        digit = n % base
        val += digit * inv_base_n
        n //= base
        inv_base_n *= inv_base
    return val

def halton_sequence(dim, n):
    return [radical_inverse(PRIMES[dim], n) for dim in range(dim)]

def hammersley_sequence(dim, n, num_samples):
    return [n / num_samples] + halton_sequence(dim - 1, n)

def sphere_hammersley_sequence(n, num_samples, offset=(0, 0)):
    u, v = hammersley_sequence(2, n, num_samples)
    u += offset[0] / num_samples
    v += offset[1]
    u = 2 * u if u < 0.25 else 2 / 3 * u + 1 / 3
    theta = np.arccos(1 - 2 * u) - np.pi / 2
    phi = v * 2 * np.pi
    return [phi, theta]

def trellis_cond_camera_sequence(num_cond_views):
    yaws = []
    pitchs = []
    offset = (np.random.rand(), np.random.rand())
    for i in range(num_cond_views):
        y, p = sphere_hammersley_sequence(i, num_cond_views, offset)
        yaws.append(y)
        pitchs.append(p)
    fov_min, fov_max = 10, 70
    radius_min = np.sqrt(3) / 2 / np.sin(fov_max / 360 * np.pi)
    radius_max = np.sqrt(3) / 2 / np.sin(fov_min / 360 * np.pi)
    k_min = 1 / radius_max**2
    k_max = 1 / radius_min**2
    ks = np.random.uniform(k_min, k_max, (1000000,))
    radius = [1 / np.sqrt(k) for k in ks]
    fov = [2 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]

    views = [{'hangle': y, 'vangle': p, 'cam_dis': r, 'fov': f, 'proj_type': 0} \
             for y, p, r, f in zip(yaws, pitchs, radius, fov)]
    return views

def orthogonal_camera_sequence():
    yaws = [-0.5 * np.pi, 0, 0.5 * np.pi, np.pi, -0.5 * np.pi, -0.5 * np.pi]
    pitchs = [0, 0, 0, 0, 0.5 * np.pi, -0.5 * np.pi]
    radius = [1.5 for i in range(6)]
    fov = [1.5 * np.arcsin(np.sqrt(3) / 2 / r) for r in radius]
    views = [{'hangle': y, 'vangle': p, 'cam_dis': r, 'fov': f, 'proj_type': 1} \
             for y, p, r, f in zip(yaws, pitchs, radius, fov)]
    return views


def switch_to_mr_render(render_base_color, output_nodes):
    bpy.context.scene.view_settings.view_transform = 'Raw'
    bpy.context.scene.use_nodes = True
    tree = bpy.context.scene.node_tree
    links = tree.links

    for i in range(len(output_nodes)):
        if i + 1 != len(output_nodes):
            for l in output_nodes[i][1].links:
                links.remove(l)
        else:
            links.new(output_nodes[i][0], output_nodes[i][1])

    for material in bpy.data.materials:
        if not material.use_nodes:
            continue
        bsdf_node = None
        output_node = None
        node_tree = material.node_tree
        links = material.node_tree.links
        nodes = node_tree.nodes
        for node in node_tree.nodes:
            # Check if the node is a BSDF node
            if node.type == 'BSDF_PRINCIPLED':
                bsdf_node = node
            if node.type == 'OUTPUT_MATERIAL':
                output_node = node
        if bsdf_node is None or output_node is None:
            continue
        #bsdf_node.inputs['Emission'].default_value = 0
        bsdf_node.inputs['Emission Strength'].default_value = 0
        mr_node = None
        bc_node = None
        for node in node_tree.nodes:
            # Check if the node is a BSDF node
            if node.name == 'COMBINE_METALLIC_ROUGHNESS':
                mr_node = node
            if node.name == 'COMBINE_BASE_COLOR':
                bc_node = node
        if mr_node is None:
            combine_rgb_node = nodes.new('ShaderNodeCombineColor')
            #combine_rgb_node.name = 'COMBINE_METALLIC_ROUGHNESS'
            
            # Optionally, set the RGB values
            combine_rgb_node.inputs['Red'].default_value = 1.0
            combine_rgb_node.inputs['Green'].default_value = 0.5
            combine_rgb_node.inputs['Blue'].default_value = 0.0
            metallic_input = bsdf_node.inputs["Metallic"]

            if metallic_input.links:
                source_endpoint = metallic_input.links[0].from_socket
                links.new(source_endpoint, combine_rgb_node.inputs['Blue'])

            roughness_input = bsdf_node.inputs['Roughness']
            if roughness_input.links:
                source_endpoint = roughness_input.links[0].from_socket
                links.new(source_endpoint, combine_rgb_node.inputs['Green'])

            emission_shader = nodes.new("ShaderNodeEmission")
            emission_shader.inputs["Strength"].default_value = 1
            links.new(combine_rgb_node.outputs["Color"], emission_shader.inputs["Color"])

            mix_shader = nodes.new("ShaderNodeMixShader")
            mix_shader.name = 'COMBINE_METALLIC_ROUGHNESS'
            links.new(bsdf_node.outputs["BSDF"], mix_shader.inputs[1])
            links.new(emission_shader.outputs["Emission"], mix_shader.inputs[2])
            mr_node = mix_shader

            mix_shader_bc = nodes.new("ShaderNodeMixShader")
            mix_shader_bc.name = 'COMBINE_BASE_COLOR'
            
            if len(bsdf_node.inputs['Base Color'].links) > 0:
                socket = bsdf_node.inputs['Base Color'].links[0].from_socket
                gamma_node = node_tree.nodes.new(type='ShaderNodeGamma')

                gamma_node.inputs[1].default_value = 0.454
                node_tree.links.new(socket, gamma_node.inputs[0])
                node_tree.links.new(gamma_node.outputs[0], mix_shader_bc.inputs[1])

            links.new(mix_shader.outputs["Shader"], mix_shader_bc.inputs[2])
            bc_node = mix_shader_bc

            for l in output_node.inputs['Surface'].links:
                links.remove(l)
            links.new(mix_shader_bc.outputs["Shader"], output_node.inputs["Surface"])

        mr_node.inputs["Fac"].default_value = 1.0
        if render_base_color:
            bc_node.inputs['Fac'].default_value = 0.0
        else:
            bc_node.inputs['Fac'].default_value = 1.0

def switch_to_color_render(output_nodes):
    bpy.context.scene.view_settings.view_transform = 'Standard'
    bpy.context.scene.use_nodes = True
    tree = bpy.context.scene.node_tree
    links = tree.links

    for i in range(len(output_nodes)):
        if i + 1 == len(output_nodes):
            for l in output_nodes[i][1].links:
                links.remove(l)
        else:
            links.new(output_nodes[i][0], output_nodes[i][1])

    for material in bpy.data.materials:
        if not material.use_nodes:
            continue
        node_tree = material.node_tree
        links = material.node_tree.links
        nodes = node_tree.nodes
        mr_node = None
        bc_node = None
        for node in node_tree.nodes:
            if node.name == 'COMBINE_METALLIC_ROUGHNESS':
                mr_node = node
            if node.name == 'COMBINE_BASE_COLOR':
                bc_node = node
        if mr_node is not None and bc_node is not None:
            mr_node.inputs["Fac"].default_value = 0.0
            if len(bc_node.inputs[1].links) > 0:
                try:
                    node = bc_node.inputs[1].links[0].from_socket.node
                    node.image.colorspace_settings.name = 'sRGB'
                except:
                    pass

# def ConvertNormalMap(input_exr, output_jpg):
#     import OpenEXR
#     import Imath
#     file = OpenEXR.InputFile(input_exr)
#     channels = file.header()['channels'].keys()

#     # Get the image data
#     data_window = file.header()['dataWindow']
#     width = data_window.max.x - data_window.min.x + 1
#     height = data_window.max.y - data_window.min.y + 1

#     # Read the X, Y, and Z channels as 32-bit floats
#     x_channel = np.frombuffer(file.channel('X', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
#     y_channel = np.frombuffer(file.channel('Y', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
#     z_channel = np.frombuffer(file.channel('Z', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)

#     # Reshape the channels into 2D arrays
#     x_channel = x_channel.reshape((height, width))
#     y_channel = y_channel.reshape((height, width))
#     z_channel = z_channel.reshape((height, width))

#     # Stack the channels to create a 3D array
#     normal = np.stack((x_channel, y_channel, z_channel), axis=-1)
#     normal = ((normal * 0.5 + 0.5) * 255).astype('uint8')
#     cv2.imwrite(output_jpg, normal)


def ConvertNormalMap(input_exr, output_jpg):
    # Read EXR file with OpenCV (returns float32 image)
    exr_img = cv2.imread(input_exr, cv2.IMREAD_UNCHANGED)
    if exr_img is None:
        raise RuntimeError(f"Failed to load EXR file: {input_exr}")
    print(f"EXR shape: {exr_img.shape}, dtype: {exr_img.dtype}")
    normal = ((exr_img * 0.5 + 0.5) * 255).clip(0, 255).astype(np.uint8)
    cv2.imwrite(output_jpg, normal)
    print(f"Saved normal map to {output_jpg}")


gidx = 0
def ConvertDepthMap(input_exr, output_png):
    import bpy
    
    # cam = bpy.data.objects.get('Camera')
    cams = [obj for obj in bpy.data.objects if obj.type == 'CAMERA']
    print("All cameras in scene:")
    if not cams:
        raise RuntimeError("No camera objects found in the scene")
    for c in cams:
        print(f"  {c.name} - type: {c.type}")
    cam = cams[0]
    
    print('cam', cam)
    print('cam.type', cam.type)  # should be 'CAMERA'
    print('cam_data', cam.data)  # should not be None
    print(f"Using camera: {cam.name}")

    cam_data = cam.data
    
    exr_img = cv2.imread(input_exr, cv2.IMREAD_UNCHANGED)
    if exr_img is None:
        raise RuntimeError(f"Failed to load EXR file: {input_exr}")

    print(f"EXR shape: {exr_img.shape}, dtype: {exr_img.dtype}")

    depth_channel = exr_img[:, :, 0] if exr_img.ndim == 3 else exr_img

    # filter 
    depth_channel = depth_channel.copy()
    depth_channel[depth_channel > 1e9] = 0

    extrinsic_matrix = np.array(cam.matrix_world.copy())

    scene = bpy.context.scene
    render = scene.render
    cam_data = cam.data

    resolution_x = render.resolution_x * render.pixel_aspect_x
    resolution_y = render.resolution_y * render.pixel_aspect_y

    cx = resolution_x / 2.0
    cy = resolution_y / 2.0

    if cam_data.type == 'ORTHO':
        aspect_ratio = render.resolution_x / render.resolution_y
        ortho_scale = cam_data.ortho_scale
        near = cam_data.clip_start
        far = cam_data.clip_end

        left = -ortho_scale / 2
        right = ortho_scale / 2
        top = (ortho_scale / 2) / aspect_ratio
        bottom = -top

        proj_matrix = np.array((
            (2/(right-left), 0, 0, -(right+left)/(right-left)),
            (0, 2/(top-bottom), 0, -(top+bottom)/(top-bottom)),
            (0, 0, -2/(far-near), -(far+near)/(far-near)),
            (0, 0, 0, 1)
        ))
    else:
        if cam_data.sensor_fit == 'VERTICAL':
            sensor_size = cam_data.sensor_height
            fit = 'VERTICAL'
        else:
            sensor_size = cam_data.sensor_width
            fit = 'HORIZONTAL'

        focal_length = cam_data.lens

        if fit == 'HORIZONTAL':
            scale = resolution_x / sensor_size
        else:
            scale = resolution_y / sensor_size

        fx = focal_length * scale
        fy = focal_length * scale

        K = np.array([
            [fx, 0,  cx],
            [0,  fy, cy],
            [0,  0,   1]
        ])

    mask = (depth_channel.reshape(-1) == 0)
    jj, ii = np.meshgrid(np.arange(resolution_x), np.arange(resolution_y))
    jj = jj + 0.5
    ii = ii + 0.5

    if cam_data.type == 'ORTHO':
        cam_pos = np.stack((
            (jj - cx) * (1.0 / (resolution_x - 1) * ortho_scale),
            (ii - cy) * (1.0 / (resolution_y - 1) * ortho_scale),
            depth_channel
        ), axis=-1)
    else:
        image_pos = np.stack((jj * depth_channel, ii * depth_channel, depth_channel), axis=-1)
        cam_pos = image_pos @ np.linalg.inv(K).T

    cam_pos[..., 1:] = -cam_pos[..., 1:]

    world_pos = cam_pos @ extrinsic_matrix[:3, :3].T + extrinsic_matrix[:3, 3].reshape(1, 1, 3)
    world_pos = world_pos.reshape(-1, 3)
    world_pos[mask] = 0
    world_pos = world_pos.reshape(cam_pos.shape)
    world_pos = np.stack((world_pos[..., 0], world_pos[..., 2], -world_pos[..., 1]), axis=-1)

    img_out = np.clip((0.5 + world_pos) * 255, 0, 255).astype('uint8')
    cv2.imwrite(output_png, img_out)
    print(f"Saved depth map to {output_png}")


def init_render(engine='CYCLES', resolution=512, geo_mode=False):
    bpy.context.scene.render.engine = engine
    bpy.context.scene.render.resolution_x = resolution
    bpy.context.scene.render.resolution_y = resolution
    bpy.context.scene.render.resolution_percentage = 100
    bpy.context.scene.render.image_settings.file_format = 'PNG'
    bpy.context.scene.render.image_settings.color_mode = 'RGBA'
    bpy.context.scene.render.film_transparent = True
    
    bpy.context.scene.cycles.device = 'GPU'
    #bpy.context.scene.cycles.samples = 128 if not geo_mode else 1
    bpy.context.scene.cycles.filter_type = 'BOX'
    bpy.context.scene.cycles.filter_width = 1
    bpy.context.scene.cycles.diffuse_bounces = 1
    bpy.context.scene.cycles.glossy_bounces = 1
    # bpy.context.scene.cycles.transparent_max_bounces = 3 if not geo_mode else 0
    # bpy.context.scene.cycles.transmission_bounces = 3 if not geo_mode else 1
    bpy.context.scene.cycles.use_denoising = True
        
    bpy.context.preferences.addons['cycles'].preferences.get_devices()
    # bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
    
def init_nodes(save_depth=False, save_normal=False, save_albedo=False, save_mr = False, save_mist=False):
    if not any([save_depth, save_normal, save_albedo, save_mist]):
        return {}, {}, []
    outputs = {}
    spec_nodes = {}
    composite_nodes = []
    bpy.context.scene.use_nodes = True
    bpy.context.scene.view_layers['ViewLayer'].use_pass_z = save_depth
    bpy.context.scene.view_layers['ViewLayer'].use_pass_normal = save_normal
    bpy.context.scene.view_layers['ViewLayer'].use_pass_diffuse_color = save_albedo
    bpy.context.scene.view_layers['ViewLayer'].use_pass_mist = save_mist
    
    nodes = bpy.context.scene.node_tree.nodes
    links = bpy.context.scene.node_tree.links
    for n in nodes:
        nodes.remove(n)
    
    render_layers = nodes.new('CompositorNodeRLayers')
    
    if save_depth:
        depth_file_output = nodes.new('CompositorNodeOutputFile')
        depth_file_output.base_path = ''
        depth_file_output.file_slots[0].use_node_format = True
        depth_file_output.format.file_format = "OPEN_EXR"
        links.new(render_layers.outputs['Depth'], depth_file_output.inputs[0])
        
        outputs['depth'] = depth_file_output
        composite_nodes.append((render_layers.outputs['Depth'], depth_file_output.inputs[0]))
    
    if save_normal:
        normal_file_output = nodes.new('CompositorNodeOutputFile')
        normal_file_output.base_path = ''
        normal_file_output.file_slots[0].use_node_format = True
        normal_file_output.format.file_format = 'OPEN_EXR'
        links.new(render_layers.outputs['Normal'], normal_file_output.inputs[0])
        
        outputs['normal'] = normal_file_output
        composite_nodes.append((render_layers.outputs['Normal'], normal_file_output.inputs[0]))
    
    if save_albedo:
        albedo_file_output = nodes.new('CompositorNodeOutputFile')
        albedo_file_output.base_path = ''
        albedo_file_output.file_slots[0].use_node_format = True
        albedo_file_output.format.file_format = 'PNG'
        albedo_file_output.format.color_mode = 'RGBA'
        albedo_file_output.format.color_depth = '8'
        
        alpha_albedo = nodes.new('CompositorNodeSetAlpha')
        
        links.new(render_layers.outputs['DiffCol'], alpha_albedo.inputs['Image'])
        links.new(render_layers.outputs['Alpha'], alpha_albedo.inputs['Alpha'])
        links.new(alpha_albedo.outputs['Image'], albedo_file_output.inputs[0])
        
        outputs['albedo'] = albedo_file_output
        #composite_nodes.append((alpha_albedo.outputs['Image'], albedo_file_output.inputs[0]))

    if save_mr:
        mr_file_output = tree.nodes.new(type='CompositorNodeOutputFile')
        mr_file_output.base_path = ''
        mr_file_output.file_slots[0].use_node_format = True
        mr_file_output.format.file_format = 'OPEN_EXR'
        
        links.new(render_layers.outputs['Image'], mr_file_output.inputs[0])

        outputs['mr'] = mr_file_output
        composite_nodes.append((render_layers.outputs['Image'], mr_file_output.inputs[0]))
        
    if save_mist:
        bpy.data.worlds['World'].mist_settings.start = 0
        bpy.data.worlds['World'].mist_settings.depth = 10
        
        mist_file_output = nodes.new('CompositorNodeOutputFile')
        mist_file_output.base_path = ''
        mist_file_output.file_slots[0].use_node_format = True
        mist_file_output.format.file_format = 'PNG'
        mist_file_output.format.color_mode = 'BW'
        mist_file_output.format.color_depth = '16'
        
        links.new(render_layers.outputs['Mist'], mist_file_output.inputs[0])
        
        outputs['mist'] = mist_file_output
        composite_nodes.append((render_layers.outputs['Mist'], mist_file_output.inputs[0]))

    return outputs, spec_nodes, composite_nodes

def init_scene() -> None:
    """Resets the scene to a clean state.

    Returns:
        None
    """
    # delete everything
    for obj in bpy.data.objects:
        bpy.data.objects.remove(obj, do_unlink=True)

    # delete all the materials
    for material in bpy.data.materials:
        bpy.data.materials.remove(material, do_unlink=True)

    # delete all the textures
    for texture in bpy.data.textures:
        bpy.data.textures.remove(texture, do_unlink=True)

    # delete all the images
    for image in bpy.data.images:
        bpy.data.images.remove(image, do_unlink=True)

def init_camera():
    cam = bpy.data.objects.new('Camera', bpy.data.cameras.new('Camera'))
    bpy.context.collection.objects.link(cam)
    bpy.context.scene.camera = cam
    cam.data.sensor_height = cam.data.sensor_width = 32
    cam_constraint = cam.constraints.new(type='TRACK_TO')
    cam_constraint.track_axis = 'TRACK_NEGATIVE_Z'
    cam_constraint.up_axis = 'UP_Y'
    cam_empty = bpy.data.objects.new("Empty", None)
    cam_empty.location = (0, 0, 0)
    bpy.context.scene.collection.objects.link(cam_empty)
    cam_constraint.target = cam_empty
    return cam

def init_lighting():
    # Clear existing lights
    bpy.ops.object.select_all(action="DESELECT")
    bpy.ops.object.select_by_type(type="LIGHT")
    bpy.ops.object.delete()
    
    # Create key light
    default_light = bpy.data.objects.new("Default_Light", bpy.data.lights.new("Default_Light", type="POINT"))
    bpy.context.collection.objects.link(default_light)
    default_light.data.energy = 1000
    default_light.location = (4, 1, 6)
    default_light.rotation_euler = (0, 0, 0)
    
    # create top light
    top_light = bpy.data.objects.new("Top_Light", bpy.data.lights.new("Top_Light", type="AREA"))
    bpy.context.collection.objects.link(top_light)
    top_light.data.energy = 10000
    top_light.location = (0, 0, 10)
    top_light.scale = (100, 100, 100)
    
    # create bottom light
    bottom_light = bpy.data.objects.new("Bottom_Light", bpy.data.lights.new("Bottom_Light", type="AREA"))
    bpy.context.collection.objects.link(bottom_light)
    bottom_light.data.energy = 1000
    bottom_light.location = (0, 0, -10)
    bottom_light.rotation_euler = (0, 0, 0)
    
    return {
        "default_light": default_light,
        "top_light": top_light,
        "bottom_light": bottom_light
    }


def load_object(object_path: str) -> None:
    """Loads a model with a supported file extension into the scene.

    Args:
        object_path (str): Path to the model file.

    Raises:
        ValueError: If the file extension is not supported.

    Returns:
        None
    """
    file_extension = object_path.split(".")[-1].lower()
    if file_extension is None:
        raise ValueError(f"Unsupported file type: {object_path}")

    if file_extension == "usdz":
        # install usdz io package
        dirname = os.path.dirname(os.path.realpath(__file__))
        usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
        bpy.ops.preferences.addon_install(filepath=usdz_package)
        # enable it
        addon_name = "io_scene_usdz"
        bpy.ops.preferences.addon_enable(module=addon_name)
        # import the usdz
        from io_scene_usdz.import_usdz import import_usdz

        import_usdz(context, filepath=object_path, materials=True, animations=True)
        return None

    # load from existing import functions
    import_function = IMPORT_FUNCTIONS[file_extension]

    print(f"Loading object from {object_path}")
    if file_extension == "blend":
        import_function(directory=object_path, link=False)
    elif file_extension in {"glb", "gltf"}:
        import_function(filepath=object_path, merge_vertices=True, import_shading='NORMALS')
    else:
        import_function(filepath=object_path)
        
def delete_invisible_objects() -> None:
    """Deletes all invisible objects in the scene.

    Returns:
        None
    """
    # bpy.ops.object.mode_set(mode="OBJECT")
    bpy.ops.object.select_all(action="DESELECT")
    for obj in bpy.context.scene.objects:
        if obj.hide_viewport or obj.hide_render:
            obj.hide_viewport = False
            obj.hide_render = False
            obj.hide_select = False
            obj.select_set(True)
    bpy.ops.object.delete()

    # Delete invisible collections
    invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
    for col in invisible_collections:
        bpy.data.collections.remove(col)
        
def split_mesh_normal():
    bpy.ops.object.select_all(action="DESELECT")
    objs = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"]
    bpy.context.view_layer.objects.active = objs[0]
    for obj in objs:
        obj.select_set(True)
    bpy.ops.object.mode_set(mode="EDIT")
    bpy.ops.mesh.select_all(action='SELECT')
    bpy.ops.mesh.split_normals()
    bpy.ops.object.mode_set(mode='OBJECT')
    bpy.ops.object.select_all(action="DESELECT")
            
def delete_custom_normals():
    for this_obj in bpy.data.objects:
        if this_obj.type == "MESH":
            bpy.context.view_layer.objects.active = this_obj
            bpy.ops.mesh.customdata_custom_splitnormals_clear()

def override_material():
    new_mat = bpy.data.materials.new(name="Override0123456789")
    new_mat.use_nodes = True
    new_mat.node_tree.nodes.clear()
    bsdf = new_mat.node_tree.nodes.new('ShaderNodeBsdfDiffuse')
    bsdf.inputs[0].default_value = (0.5, 0.5, 0.5, 1)
    bsdf.inputs[1].default_value = 1
    output = new_mat.node_tree.nodes.new('ShaderNodeOutputMaterial')
    new_mat.node_tree.links.new(bsdf.outputs['BSDF'], output.inputs['Surface'])
    bpy.context.scene.view_layers['ViewLayer'].material_override = new_mat

def unhide_all_objects() -> None:
    """Unhides all objects in the scene.

    Returns:
        None
    """
    for obj in bpy.context.scene.objects:
        obj.hide_set(False)
        
def convert_to_meshes() -> None:
    """Converts all objects in the scene to meshes.

    Returns:
        None
    """
    bpy.ops.object.select_all(action="DESELECT")
    bpy.context.view_layer.objects.active = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"][0]
    for obj in bpy.context.scene.objects:
        obj.select_set(True)
    bpy.ops.object.convert(target="MESH")
        
def triangulate_meshes() -> None:
    """Triangulates all meshes in the scene.

    Returns:
        None
    """
    bpy.ops.object.select_all(action="DESELECT")
    objs = [obj for obj in bpy.context.scene.objects if obj.type == "MESH"]
    bpy.context.view_layer.objects.active = objs[0]
    for obj in objs:
        obj.select_set(True)
    bpy.ops.object.mode_set(mode="EDIT")
    bpy.ops.mesh.reveal()
    bpy.ops.mesh.select_all(action="SELECT")
    bpy.ops.mesh.quads_convert_to_tris(quad_method="BEAUTY", ngon_method="BEAUTY")
    bpy.ops.object.mode_set(mode="OBJECT")
    bpy.ops.object.select_all(action="DESELECT")

def scene_bbox() -> Tuple[Vector, Vector]:
    """Returns the bounding box of the scene.

    Taken from Shap-E rendering script
    (https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)

    Returns:
        Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
    """
    bbox_min = (math.inf,) * 3
    bbox_max = (-math.inf,) * 3
    found = False
    scene_meshes = [obj for obj in bpy.context.scene.objects.values() if isinstance(obj.data, bpy.types.Mesh)]
    for obj in scene_meshes:
        found = True
        for coord in obj.bound_box:
            coord = Vector(coord)
            coord = obj.matrix_world @ coord
            bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
            bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
    if not found:
        raise RuntimeError("no objects in scene to compute bounding box for")
    return Vector(bbox_min), Vector(bbox_max)

def normalize_scene() -> Tuple[float, Vector]:
    """Normalizes the scene by scaling and translating it to fit in a unit cube centered
    at the origin.

    Mostly taken from the Point-E / Shap-E rendering script
    (https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
    but fix for multiple root objects: (see bug report here:
    https://github.com/openai/shap-e/pull/60).

    Returns:
        Tuple[float, Vector]: The scale factor and the offset applied to the scene.
    """
    scene_root_objects = [obj for obj in bpy.context.scene.objects.values() if not obj.parent]
    if len(scene_root_objects) > 1:
        # create an empty object to be used as a parent for all root objects
        scene = bpy.data.objects.new("ParentEmpty", None)
        bpy.context.scene.collection.objects.link(scene)

        # parent all root objects to the empty object
        for obj in scene_root_objects:
            obj.parent = scene
    else:
        scene = scene_root_objects[0]

    bbox_min, bbox_max = scene_bbox()
    scale = 1 / max(bbox_max - bbox_min)
    scene.scale = scene.scale * scale

    # Apply scale to matrix_world.
    bpy.context.view_layer.update()
    bbox_min, bbox_max = scene_bbox()
    offset = -(bbox_min + bbox_max) / 2
    scene.matrix_world.translation += offset
    bpy.ops.object.select_all(action="DESELECT")
    
    return scale, offset

def get_transform_matrix(obj: bpy.types.Object) -> list:
    pos, rt, _ = obj.matrix_world.decompose()
    rt = rt.to_matrix()
    matrix = []
    for ii in range(3):
        a = []
        for jj in range(3):
            a.append(rt[ii][jj])
        a.append(pos[ii])
        matrix.append(a)
    matrix.append([0, 0, 0, 1])
    return matrix

    
def main(arg):
    os.makedirs(arg.output_folder, exist_ok=True)

    if arg.geo_mode:
        views = trellis_cond_camera_sequence(arg.views)
        arg.save_mesh = True
    else:
        views = orthogonal_camera_sequence()
        arg.save_albedo = True
        arg.save_mr = True
        arg.save_normal = True
        arg.save_depth = True
        arg.save_mesh = False
    
    # Initialize context
    init_render(engine=arg.engine, resolution=arg.resolution, geo_mode=arg.geo_mode)
    outputs, spec_nodes, composite_nodes = init_nodes(
        save_depth=arg.save_depth,
        save_normal=arg.save_normal,
        save_albedo=arg.save_albedo,
        save_mist=arg.save_mist
    )
    if arg.object.endswith(".blend"):
        delete_invisible_objects()
    else:
        init_scene()
        load_object(arg.object)
        if arg.split_normal:
            split_mesh_normal()
        # delete_custom_normals()
    print('[INFO] Scene initialized.')
    
    # normalize scene
    scale, offset = normalize_scene()
    print('[INFO] Scene normalized.')
    
    # Initialize camera and lighting
    cam = init_camera()
    init_lighting()
    print('[INFO] Camera and lighting initialized.')

    # Override material
    #if arg.geo_mode:
    #    override_material()
    
    # Create a list of views
    to_export = {
        "aabb": [[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
        "scale": scale,
        "offset": [offset.x, offset.y, offset.z],
        "frames": []
    }

    for i, view in enumerate(views):
        cam.location = (
            view['cam_dis'] * np.cos(view['hangle']) * np.cos(view['vangle']),
            view['cam_dis'] * np.sin(view['hangle']) * np.cos(view['vangle']),
            view['cam_dis'] * np.sin(view['vangle'])
        )
        cam.data.lens = 16 / np.tan(view['fov'] / 2)
        
        if view['proj_type'] == 1:
            cam.data.type = "ORTHO"
            cam.data.ortho_scale = 1.2

        bpy.context.scene.render.filepath = os.path.join(arg.output_folder, f'{i:03d}.png')
        for name, output in outputs.items():
            output.file_slots[0].path = os.path.join(arg.output_folder, f'{i:03d}_{name}')
            
        # Render the scene
        if not arg.geo_mode:
            switch_to_mr_render(False, composite_nodes)
            bpy.ops.render.render(write_still=True)
            shutil.copyfile(bpy.context.scene.render.filepath, 
                            bpy.context.scene.render.filepath.replace('.png', '_mr.png'))
            switch_to_color_render(composite_nodes)

        bpy.ops.render.render(write_still=True)
        bpy.context.view_layer.update()
        for name, output in outputs.items():
            ext = EXT[output.format.file_format]
            path = glob.glob(f'{output.file_slots[0].path}*.{ext}')[0]
            os.rename(path, f'{output.file_slots[0].path}.{ext}')
        
        if not arg.geo_mode:
            ConvertNormalMap(os.path.join(arg.output_folder, f'{i:03d}_normal.exr'), 
                             os.path.join(arg.output_folder, f'{i:03d}_normal.jpg'))
            ConvertDepthMap(os.path.join(arg.output_folder, f'{i:03d}_depth.exr'), 
                            os.path.join(arg.output_folder, f'{i:03d}_pos.jpg'))
            os.remove(os.path.join(arg.output_folder, f'{i:03d}_normal.exr'))
            os.remove(os.path.join(arg.output_folder, f'{i:03d}_depth.exr'))

        # Save camera parameters
        metadata = {
            "file_path": f'{i:03d}.png',
            "camera_angle_x": view['fov'],
            'proj_type': view['proj_type'],
            'azimuth': view['hangle'],
            'elevation': view['vangle'],
            'cam_dis': view['cam_dis'],
            "transform_matrix": get_transform_matrix(cam)
        }
        to_export["frames"].append(metadata)

    # Save the camera parameters
    transform_path = os.path.join(arg.output_folder, 'transforms.json')
    with open(transform_path, 'w') as f:
        json.dump(to_export, f, indent=4)
        
    if arg.save_mesh:
        # triangulate meshes
        unhide_all_objects()
        convert_to_meshes()
        triangulate_meshes()
        print('[INFO] Meshes triangulated.')
        
        # export ply mesh
        bpy.ops.wm.ply_export(filepath=os.path.join(arg.output_folder, 'mesh.ply'), 
                              export_triangulated_mesh=True, up_axis='Y', 
                              forward_axis='NEGATIVE_Z')

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Renders given obj file by rotation a camera around it.')
    parser.add_argument('--views', type=int, default=24, 
        help='JSON string of views. Contains a list of {yaw, pitch, radius, fov} object.')
    parser.add_argument('--object', type=str, 
        help='Path to the 3D model file to be rendered.')
    parser.add_argument('--output_folder', type=str, default='/tmp', 
        help='The path the output will be dumped to.')
    parser.add_argument('--resolution', type=int, default=512, 
        help='Resolution of the images.')
    parser.add_argument('--engine', type=str, default='CYCLES', 
        help='Blender internal engine for rendering. E.g. CYCLES, BLENDER_EEVEE, ...')
    parser.add_argument('--geo_mode', action='store_true', 
        help='Geometry mode for rendering.')
    parser.add_argument('--save_depth', action='store_true', 
        help='Save the depth maps.')
    parser.add_argument('--save_normal', action='store_true', 
        help='Save the normal maps.')
    parser.add_argument('--save_albedo', action='store_true', 
        help='Save the albedo maps.')
    parser.add_argument('--save_mr', action='store_true', 
        help='Save the MR maps.')
    parser.add_argument('--save_mist', action='store_true', 
        help='Save the mist distance maps.')
    parser.add_argument('--split_normal', action='store_true', 
        help='Split the normals of the mesh.')
    parser.add_argument('--save_mesh', action='store_true', 
        help='Save the mesh as a .ply file.')
    argv = sys.argv[sys.argv.index("--") + 1:]
    args = parser.parse_args(argv)

    main(args)