Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,145 Bytes
600759a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.
# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
import torch
import os, sys
import argparse
import shutil
import subprocess
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.utilities import rank_zero_only, rank_zero_warn
from src.utils.train_util import instantiate_from_config
import warnings
warnings.filterwarnings("ignore")
from diffusers.utils import logging as diffusers_logging
diffusers_logging.set_verbosity(50)
@rank_zero_only
def rank_zero_print(*args):
print(*args)
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-r",
"--resume",
type=str,
default=None,
help="resume from checkpoint",
)
parser.add_argument(
"--resume_weights_only",
action="store_true",
help="only resume model weights",
)
parser.add_argument(
"-b",
"--base",
type=str,
default="base_config.yaml",
help="path to base configs",
)
parser.add_argument(
"-n",
"--name",
type=str,
default="",
help="experiment name",
)
parser.add_argument(
"--num_nodes",
type=int,
default=1,
help="number of nodes to use",
)
parser.add_argument(
"--gpus",
type=str,
default="0,",
help="gpu ids to use",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=42,
help="seed for seed_everything",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging data",
)
return parser
class SetupCallback(Callback):
def __init__(self, resume, logdir, ckptdir, cfgdir, config):
super().__init__()
self.resume = resume
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
rank_zero_print("Project config")
rank_zero_print(OmegaConf.to_yaml(self.config))
OmegaConf.save(self.config, os.path.join(self.cfgdir, "project.yaml"))
class CodeSnapshot(Callback):
"""
Modified from https://github.com/threestudio-project/threestudio/blob/main/threestudio/utils/callbacks.py#L60
"""
def __init__(self, savedir):
self.savedir = savedir
def get_file_list(self):
return [
b.decode()
for b in set(subprocess.check_output('git ls-files -- ":!:configs/*"', shell=True).splitlines())
| set( # hard code, TODO: use config to exclude folders or files
subprocess.check_output("git ls-files --others --exclude-standard", shell=True).splitlines()
)
]
@rank_zero_only
def save_code_snapshot(self):
os.makedirs(self.savedir, exist_ok=True)
# for f in self.get_file_list():
# if not os.path.exists(f) or os.path.isdir(f):
# continue
# os.makedirs(os.path.join(self.savedir, os.path.dirname(f)), exist_ok=True)
# shutil.copyfile(f, os.path.join(self.savedir, f))
def on_fit_start(self, trainer, pl_module):
try:
self.save_code_snapshot()
except:
rank_zero_warn(
"Code snapshot is not saved. Please make sure you have git installed and are in a git repository."
)
if __name__ == "__main__":
# add cwd for convenience and to make classes in this file available when
# running as `python main.py`
sys.path.append(os.getcwd())
torch.set_float32_matmul_precision("medium")
parser = get_parser()
opt, unknown = parser.parse_known_args()
cfg_fname = os.path.split(opt.base)[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
exp_name = "-" + opt.name if opt.name != "" else ""
logdir = os.path.join(opt.logdir, cfg_name + exp_name)
# assert not os.path.exists(logdir) or 'test' in logdir, logdir
if os.path.exists(logdir) and opt.resume is None:
auto_resume_path = os.path.join(logdir, "checkpoints", "last.ckpt")
if os.path.exists(auto_resume_path):
opt.resume = auto_resume_path
print(f"Auto set resume ckpt {opt.resume}")
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
codedir = os.path.join(logdir, "code")
node_rank = int(os.environ.get("NODE_RANK", 0)) # 当前节点的编号
local_rank = int(os.environ.get("LOCAL_RANK", 0)) # 当前节点上的 GPU 编号
num_gpus_per_node = torch.cuda.device_count() # 每个节点上的 GPU 数量
global_rank = node_rank * num_gpus_per_node + local_rank
seed_everything(opt.seed + global_rank)
# init configs
config = OmegaConf.load(opt.base)
lightning_config = config.lightning
trainer_config = lightning_config.trainer
trainer_config["accelerator"] = "gpu"
rank_zero_print(f"Running on GPUs {opt.gpus}")
try:
ngpu = int(opt.gpus)
except:
ngpu = len(opt.gpus.strip(",").split(","))
trainer_config["devices"] = ngpu
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
model_unet = model.unet.unet
model_unet_prefix = "unet.unet."
if hasattr(model_unet, "unet"):
model_unet = model_unet.unet
model_unet_prefix += "unet."
if getattr(config, "init_unet_from", None):
unet_ckpt_path = config.init_unet_from
sd = torch.load(unet_ckpt_path, map_location="cpu")
model_unet.load_state_dict(sd, strict=True)
if getattr(config, "init_vae_from", None):
vae_ckpt_path = config.init_vae_from
sd_vae = torch.load(vae_ckpt_path, map_location="cpu")
def replace_key(key_str):
replace_pairs = [("key", "to_k"), ("query", "to_q"), ("value", "to_v"), ("proj_attn", "to_out.0")]
for replace_pair in replace_pairs:
key_str = key_str.replace(replace_pair[0], replace_pair[1])
return key_str
sd_vae = {replace_key(k): v for k, v in sd_vae.items()}
model.pipeline.vae.load_state_dict(sd_vae, strict=True)
if hasattr(model.unet, "controlnet"):
if getattr(config, "init_control_from", None):
unet_ckpt_path = config.init_control_from
sd_control = torch.load(unet_ckpt_path, map_location="cpu")
model.unet.controlnet.load(sd_control, strict=True)
noise_in_channels = config.model.params.get("noise_in_channels", None)
if noise_in_channels is not None:
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(
noise_in_channels,
model_unet.conv_in.out_channels,
model_unet.conv_in.kernel_size,
model_unet.conv_in.stride,
model_unet.conv_in.padding,
)
new_conv_in.weight.zero_()
new_conv_in.weight[:, : model_unet.conv_in.in_channels, :, :].copy_(model_unet.conv_in.weight)
new_conv_in.bias.zero_()
new_conv_in.bias[: model_unet.conv_in.bias.size(0)].copy_(model_unet.conv_in.bias)
model_unet.conv_in = new_conv_in
if hasattr(model.unet, "controlnet"):
if config.model.params.get("control_in_channels", None):
control_in_channels = config.model.params.control_in_channels
model.unet.controlnet.config["conditioning_channels"] = control_in_channels
condition_conv_in = model.unet.controlnet.controlnet_cond_embedding.conv_in
new_condition_conv_in = torch.nn.Conv2d(
control_in_channels,
condition_conv_in.out_channels,
kernel_size=condition_conv_in.kernel_size,
stride=condition_conv_in.stride,
padding=condition_conv_in.padding,
)
with torch.no_grad():
new_condition_conv_in.weight[:, : condition_conv_in.in_channels, :, :] = condition_conv_in.weight
if condition_conv_in.bias is not None:
new_condition_conv_in.bias = condition_conv_in.bias
model.unet.controlnet.controlnet_cond_embedding.conv_in = new_condition_conv_in
rank_zero_print(f"Loaded Init ...")
if getattr(config, "resume_from", None):
cnet_ckpt_path = config.resume_from
sds = torch.load(cnet_ckpt_path, map_location="cpu")["state_dict"]
sd0 = {k[len(model_unet_prefix) :]: v for k, v in sds.items() if model_unet_prefix in k}
# model.unet.unet.unet.load_state_dict(sd0, strict=True)
model_unet.load_state_dict(sd0, strict=True)
if hasattr(model.unet, "controlnet"):
sd1 = {k[16:]: v for k, v in sds.items() if "unet.controlnet." in k}
model.unet.controlnet.load_state_dict(sd1, strict=True)
rank_zero_print(f"Loaded {cnet_ckpt_path} ...")
if opt.resume and opt.resume_weights_only:
model = model.__class__.load_from_checkpoint(opt.resume, **config.model.params)
model.logdir = logdir
# trainer and callbacks
trainer_kwargs = dict()
# logger
default_logger_cfg = {
"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {
"name": "tensorboard",
"save_dir": logdir,
"version": "0",
},
}
logger_cfg = OmegaConf.merge(default_logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# model checkpoint
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{step:08}",
"verbose": True,
"save_last": True,
"every_n_train_steps": 5000,
"save_top_k": -1, # save all checkpoints
},
}
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
# callbacks
default_callbacks_cfg = {
"setup_callback": {
"target": "train.SetupCallback",
"params": {
"resume": opt.resume,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
},
},
"learning_rate_logger": {
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
"params": {
"logging_interval": "step",
},
},
"code_snapshot": {
"target": "train.CodeSnapshot",
"params": {
"savedir": codedir,
},
},
}
default_callbacks_cfg["checkpoint_callback"] = modelckpt_cfg
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer_kwargs["precision"] = "bf16"
trainer_kwargs["strategy"] = DDPStrategy(find_unused_parameters=False)
# trainer
trainer = Trainer(**trainer_config, **trainer_kwargs, num_nodes=opt.num_nodes, inference_mode=False)
trainer.logdir = logdir
# data
data = instantiate_from_config(config.data)
data.prepare_data()
data.setup("fit")
# configure learning rate
base_lr = config.model.base_learning_rate
if "accumulate_grad_batches" in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
rank_zero_print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
model.learning_rate = base_lr
rank_zero_print("++++ NOT USING LR SCALING ++++")
rank_zero_print(f"Setting learning rate to {model.learning_rate:.2e}")
# run training loop
if opt.resume and not opt.resume_weights_only:
trainer.fit(model, data, ckpt_path=opt.resume)
else:
trainer.fit(model, data)
|