File size: 6,063 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import os
import time
import glob
import json
import random
import numpy as np
import torch
from .loader_util import BaseDataset


class TextureDataset(BaseDataset):

    def __init__(
        self, json_path, num_view=6, image_size=512, lighting_suffix_pool=["light_PL", "light_AL", "light_ENVMAP"]
    ):
        self.data = list()
        self.num_view = num_view
        self.image_size = image_size
        self.lighting_suffix_pool = lighting_suffix_pool
        if isinstance(json_path, str):
            json_path = [json_path]
        for jp in json_path:
            with open(jp) as f:
                self.data.extend(json.load(f))
        print("============= length of dataset %d =============" % len(self.data))

    def __getitem__(self, index):
        try_sleep_interval = 20
        total_try_num = 100
        cnt = try_sleep_interval * total_try_num
        # try:
        images_ref = list()
        images_albedo = list()
        images_mr = list()
        images_normal = list()
        images_position = list()
        bg_white = [1.0, 1.0, 1.0]
        bg_black = [0.0, 0.0, 0.0]
        bg_gray = [127 / 255.0, 127 / 255.0, 127 / 255.0]
        dirx = self.data[index]

        condition_dict = {}

        # 6view
        fix_num_view = self.num_view
        available_views = []
        for ext in ["*_albedo.png", "*_albedo.jpg", "*_albedo.jpeg"]:
            available_views.extend(glob.glob(os.path.join(dirx, "render_tex", ext)))
        cond_images = (
            glob.glob(os.path.join(dirx, "render_cond", "*.png"))
            + glob.glob(os.path.join(dirx, "render_cond", "*.jpg"))
            + glob.glob(os.path.join(dirx, "render_cond", "*.jpeg"))
        )

        # 确保有足够的样本
        if len(available_views) < fix_num_view:
            print(
                f"Warning: Only {len(available_views)} views available, but {fix_num_view} requested."
                "Using all available views."
            )
            images_gen = available_views
        else:
            images_gen = random.sample(available_views, fix_num_view)

        if not cond_images:
            raise ValueError(f"No condition images found in {os.path.join(dirx, 'render_cond')}")
        ref_image_path = random.choice(cond_images)
        light_suffix = None
        for suffix in self.lighting_suffix_pool:
            if suffix in ref_image_path:
                light_suffix = suffix
                break
        if light_suffix is None:
            raise ValueError(f"light suffix not found in {ref_image_path}")
        ref_image_diff_light_path = random.choice(
            [
                ref_image_path.replace(light_suffix, tar_suffix)
                for tar_suffix in self.lighting_suffix_pool
                if tar_suffix != light_suffix
            ]
        )
        images_ref_paths = [ref_image_path, ref_image_diff_light_path]

        # Data aug
        bg_c_record = None
        for i, image_ref in enumerate(images_ref_paths):
            if random.random() < 0.6:
                bg_c = bg_gray
            else:
                if random.random() < 0.5:
                    bg_c = bg_black
                else:
                    bg_c = bg_white
            if i == 0:
                bg_c_record = bg_c
            image, alpha = self.load_image(image_ref, bg_c_record)
            image = self.augment_image(image, bg_c_record).float()
            images_ref.append(image)
        condition_dict["images_cond"] = torch.stack(images_ref, dim=0).float()

        for i, image_gen in enumerate(images_gen):
            images_albedo.append(self.augment_image(self.load_image(image_gen, bg_gray)[0], bg_gray))
            images_mr.append(
                self.augment_image(self.load_image(image_gen.replace("_albedo", "_mr"), bg_gray)[0], bg_gray)
            )
            images_normal.append(
                self.augment_image(self.load_image(image_gen.replace("_albedo", "_normal"), bg_gray)[0], bg_gray)
            )
            images_position.append(
                self.augment_image(self.load_image(image_gen.replace("_albedo", "_pos"), bg_gray)[0], bg_gray)
            )

        condition_dict["images_albedo"] = torch.stack(images_albedo, dim=0).float()
        condition_dict["images_mr"] = torch.stack(images_mr, dim=0).float()
        condition_dict["images_normal"] = torch.stack(images_normal, dim=0).float()
        condition_dict["images_position"] = torch.stack(images_position, dim=0).float()
        condition_dict["name"] = dirx  # .replace('/', '_')
        return condition_dict  # (N, 3, H, W)

        # except Exception as e:
        #     print(e, self.data[index])
        #     # exit()


if __name__ == "__main__":
    dataset = TextureDataset(json_path=["../../../train_examples/examples.json"])
    print("images_cond", dataset[0]["images_cond"].shape)
    print("images_albedo", dataset[0]["images_albedo"].shape)
    print("images_mr", dataset[0]["images_mr"].shape)
    print("images_normal", dataset[0]["images_normal"].shape)
    print("images_position", dataset[0]["images_position"].shape)
    print("name", dataset[0]["name"])