File size: 6,078 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import torch
import numpy as np


class ViewProcessor:
    def __init__(self, config, render):
        self.config = config
        self.render = render

    def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True):
        normal_maps = []
        for elev, azim in zip(camera_elevs, camera_azims):
            normal_map = self.render.render_normal(elev, azim, use_abs_coor=use_abs_coor, return_type="pl")
            normal_maps.append(normal_map)

        return normal_maps

    def render_position_multiview(self, camera_elevs, camera_azims):
        position_maps = []
        for elev, azim in zip(camera_elevs, camera_azims):
            position_map = self.render.render_position(elev, azim, return_type="pl")
            position_maps.append(position_map)

        return position_maps

    def bake_view_selection(
        self, candidate_camera_elevs, candidate_camera_azims, candidate_view_weights, max_selected_view_num
    ):

        original_resolution = self.render.default_resolution
        self.render.set_default_render_resolution(1024)

        selected_camera_elevs = []
        selected_camera_azims = []
        selected_view_weights = []
        selected_alpha_maps = []
        viewed_tri_idxs = []
        viewed_masks = []

        # 计算每个三角片的面积
        face_areas = self.render.get_face_areas(from_one_index=True)
        total_area = face_areas.sum()
        face_area_ratios = face_areas / total_area

        candidate_view_num = len(candidate_camera_elevs)
        self.render.set_boundary_unreliable_scale(2)

        for elev, azim in zip(candidate_camera_elevs, candidate_camera_azims):
            viewed_tri_idx = self.render.render_alpha(elev, azim, return_type="np")
            viewed_tri_idxs.append(set(np.unique(viewed_tri_idx.flatten())))
            viewed_masks.append(viewed_tri_idx[0, :, :, 0] > 0)

        is_selected = [False for _ in range(candidate_view_num)]
        total_viewed_tri_idxs = set()
        total_viewed_area = 0.0

        for idx in range(6):
            selected_camera_elevs.append(candidate_camera_elevs[idx])
            selected_camera_azims.append(candidate_camera_azims[idx])
            selected_view_weights.append(candidate_view_weights[idx])
            selected_alpha_maps.append(viewed_masks[idx])
            is_selected[idx] = True
            total_viewed_tri_idxs.update(viewed_tri_idxs[idx])

        total_viewed_area = face_area_ratios[list(total_viewed_tri_idxs)].sum()
        for iter in range(max_selected_view_num - len(selected_view_weights)):
            max_inc = 0
            max_idx = -1

            for idx, (elev, azim, weight) in enumerate(
                zip(candidate_camera_elevs, candidate_camera_azims, candidate_view_weights)
            ):
                if is_selected[idx]:
                    continue
                new_tri_idxs = viewed_tri_idxs[idx] - total_viewed_tri_idxs
                new_inc_area = face_area_ratios[list(new_tri_idxs)].sum()

                if new_inc_area > max_inc:
                    max_inc = new_inc_area
                    max_idx = idx

            if max_inc > 0.01:
                is_selected[max_idx] = True
                selected_camera_elevs.append(candidate_camera_elevs[max_idx])
                selected_camera_azims.append(candidate_camera_azims[max_idx])
                selected_view_weights.append(candidate_view_weights[max_idx])
                selected_alpha_maps.append(viewed_masks[max_idx])
                total_viewed_tri_idxs = total_viewed_tri_idxs.union(viewed_tri_idxs[max_idx])
                total_viewed_area += max_inc
            else:
                break

        self.render.set_default_render_resolution(original_resolution)

        return selected_camera_elevs, selected_camera_azims, selected_view_weights

    def bake_from_multiview(self, views, camera_elevs, camera_azims, view_weights):
        project_textures, project_weighted_cos_maps = [], []
        project_boundary_maps = []

        for view, camera_elev, camera_azim, weight in zip(views, camera_elevs, camera_azims, view_weights):
            project_texture, project_cos_map, project_boundary_map = self.render.back_project(
                view, camera_elev, camera_azim
            )
            project_cos_map = weight * (project_cos_map**self.config.bake_exp)
            project_textures.append(project_texture)
            project_weighted_cos_maps.append(project_cos_map)
            project_boundary_maps.append(project_boundary_map)
            texture, ori_trust_map = self.render.fast_bake_texture(project_textures, project_weighted_cos_maps)
        return texture, ori_trust_map > 1e-8

    def texture_inpaint(self, texture, mask, defualt=None):
        if defualt is not None:
            mask = mask.astype(bool)
            inpaint_value = torch.tensor(defualt, dtype=texture.dtype, device=texture.device)
            texture[~mask] = inpaint_value
        else:
            texture_np = self.render.uv_inpaint(texture, mask)
            texture = torch.tensor(texture_np / 255).float().to(texture.device)

        return texture