Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,328 Bytes
600759a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <functional>
namespace py = pybind11;
using namespace std;
namespace {
// 内部数据结构,避免重复的buffer获取和指针设置
struct MeshData {
int texture_height, texture_width, texture_channel;
int vtx_num;
float* texture_ptr;
uint8_t* mask_ptr;
float* vtx_pos_ptr;
float* vtx_uv_ptr;
int* pos_idx_ptr;
int* uv_idx_ptr;
// 存储buffer以防止被销毁
py::buffer_info texture_buf, mask_buf, vtx_pos_buf, vtx_uv_buf, pos_idx_buf, uv_idx_buf;
MeshData(py::array_t<float>& texture, py::array_t<uint8_t>& mask,
py::array_t<float>& vtx_pos, py::array_t<float>& vtx_uv,
py::array_t<int>& pos_idx, py::array_t<int>& uv_idx) {
texture_buf = texture.request();
mask_buf = mask.request();
vtx_pos_buf = vtx_pos.request();
vtx_uv_buf = vtx_uv.request();
pos_idx_buf = pos_idx.request();
uv_idx_buf = uv_idx.request();
texture_height = texture_buf.shape[0];
texture_width = texture_buf.shape[1];
texture_channel = texture_buf.shape[2];
texture_ptr = static_cast<float*>(texture_buf.ptr);
mask_ptr = static_cast<uint8_t*>(mask_buf.ptr);
vtx_num = vtx_pos_buf.shape[0];
vtx_pos_ptr = static_cast<float*>(vtx_pos_buf.ptr);
vtx_uv_ptr = static_cast<float*>(vtx_uv_buf.ptr);
pos_idx_ptr = static_cast<int*>(pos_idx_buf.ptr);
uv_idx_ptr = static_cast<int*>(uv_idx_buf.ptr);
}
};
// 公共函数:计算UV坐标
pair<int, int> calculateUVCoordinates(int vtx_uv_idx, const MeshData& data) {
int uv_v = round(data.vtx_uv_ptr[vtx_uv_idx * 2] * (data.texture_width - 1));
int uv_u = round((1.0 - data.vtx_uv_ptr[vtx_uv_idx * 2 + 1]) * (data.texture_height - 1));
return make_pair(uv_u, uv_v);
}
// 公共函数:计算距离权重
float calculateDistanceWeight(const array<float, 3>& vtx_0, const array<float, 3>& vtx1) {
float dist_weight = 1.0f / max(
sqrt(
pow(vtx_0[0] - vtx1[0], 2) +
pow(vtx_0[1] - vtx1[1], 2) +
pow(vtx_0[2] - vtx1[2], 2)
), 1E-4);
return dist_weight * dist_weight;
}
// 公共函数:获取顶点位置
array<float, 3> getVertexPosition(int vtx_idx, const MeshData& data) {
return {data.vtx_pos_ptr[vtx_idx * 3],
data.vtx_pos_ptr[vtx_idx * 3 + 1],
data.vtx_pos_ptr[vtx_idx * 3 + 2]};
}
// 公共函数:构建图结构
void buildGraph(vector<vector<int>>& G, const MeshData& data) {
G.resize(data.vtx_num);
for(int i = 0; i < data.uv_idx_buf.shape[0]; ++i) {
for(int k = 0; k < 3; ++k) {
G[data.pos_idx_ptr[i * 3 + k]].push_back(data.pos_idx_ptr[i * 3 + (k + 1) % 3]);
}
}
}
// 通用初始化函数:处理两种掩码类型(float和int)
template<typename MaskType>
void initializeVertexDataGeneric(const MeshData& data, vector<MaskType>& vtx_mask,
vector<vector<float>>& vtx_color, vector<int>* uncolored_vtxs = nullptr,
MaskType mask_value = static_cast<MaskType>(1)) {
vtx_mask.assign(data.vtx_num, static_cast<MaskType>(0));
vtx_color.assign(data.vtx_num, vector<float>(data.texture_channel, 0.0f));
if(uncolored_vtxs) {
uncolored_vtxs->clear();
}
for(int i = 0; i < data.uv_idx_buf.shape[0]; ++i) {
for(int k = 0; k < 3; ++k) {
int vtx_uv_idx = data.uv_idx_ptr[i * 3 + k];
int vtx_idx = data.pos_idx_ptr[i * 3 + k];
auto uv_coords = calculateUVCoordinates(vtx_uv_idx, data);
if(data.mask_ptr[uv_coords.first * data.texture_width + uv_coords.second] > 0) {
vtx_mask[vtx_idx] = mask_value;
for(int c = 0; c < data.texture_channel; ++c) {
vtx_color[vtx_idx][c] = data.texture_ptr[(uv_coords.first * data.texture_width +
uv_coords.second) * data.texture_channel + c];
}
} else if(uncolored_vtxs) {
uncolored_vtxs->push_back(vtx_idx);
}
}
}
}
// 通用平滑算法:支持不同的掩码类型和检查函数
template<typename MaskType>
void performSmoothingAlgorithm(const MeshData& data, const vector<vector<int>>& G,
vector<MaskType>& vtx_mask, vector<vector<float>>& vtx_color,
const vector<int>& uncolored_vtxs,
function<bool(MaskType)> is_colored_func,
function<void(MaskType&)> set_colored_func) {
int smooth_count = 2;
int last_uncolored_vtx_count = 0;
while(smooth_count > 0) {
int uncolored_vtx_count = 0;
for(int vtx_idx : uncolored_vtxs) {
vector<float> sum_color(data.texture_channel, 0.0f);
float total_weight = 0.0f;
array<float, 3> vtx_0 = getVertexPosition(vtx_idx, data);
for(int connected_idx : G[vtx_idx]) {
if(is_colored_func(vtx_mask[connected_idx])) {
array<float, 3> vtx1 = getVertexPosition(connected_idx, data);
float dist_weight = calculateDistanceWeight(vtx_0, vtx1);
for(int c = 0; c < data.texture_channel; ++c) {
sum_color[c] += vtx_color[connected_idx][c] * dist_weight;
}
total_weight += dist_weight;
}
}
if(total_weight > 0.0f) {
for(int c = 0; c < data.texture_channel; ++c) {
vtx_color[vtx_idx][c] = sum_color[c] / total_weight;
}
set_colored_func(vtx_mask[vtx_idx]);
} else {
uncolored_vtx_count++;
}
}
if(last_uncolored_vtx_count == uncolored_vtx_count) {
smooth_count--;
} else {
smooth_count++;
}
last_uncolored_vtx_count = uncolored_vtx_count;
}
}
// 前向传播算法的通用实现
void performForwardPropagation(const MeshData& data, const vector<vector<int>>& G,
vector<float>& vtx_mask, vector<vector<float>>& vtx_color,
queue<int>& active_vtxs) {
while(!active_vtxs.empty()) {
queue<int> pending_active_vtxs;
while(!active_vtxs.empty()) {
int vtx_idx = active_vtxs.front();
active_vtxs.pop();
array<float, 3> vtx_0 = getVertexPosition(vtx_idx, data);
for(int connected_idx : G[vtx_idx]) {
if(vtx_mask[connected_idx] > 0) continue;
array<float, 3> vtx1 = getVertexPosition(connected_idx, data);
float dist_weight = calculateDistanceWeight(vtx_0, vtx1);
for(int c = 0; c < data.texture_channel; ++c) {
vtx_color[connected_idx][c] += vtx_color[vtx_idx][c] * dist_weight;
}
if(vtx_mask[connected_idx] == 0) {
pending_active_vtxs.push(connected_idx);
}
vtx_mask[connected_idx] -= dist_weight;
}
}
while(!pending_active_vtxs.empty()) {
int vtx_idx = pending_active_vtxs.front();
pending_active_vtxs.pop();
for(int c = 0; c < data.texture_channel; ++c) {
vtx_color[vtx_idx][c] /= -vtx_mask[vtx_idx];
}
vtx_mask[vtx_idx] = 1.0f;
active_vtxs.push(vtx_idx);
}
}
}
// 公共函数:创建输出数组
pair<py::array_t<float>, py::array_t<uint8_t>> createOutputArrays(
const MeshData& data, const vector<float>& vtx_mask,
const vector<vector<float>>& vtx_color) {
py::array_t<float> new_texture(data.texture_buf.size);
py::array_t<uint8_t> new_mask(data.mask_buf.size);
auto new_texture_buf = new_texture.request();
auto new_mask_buf = new_mask.request();
float* new_texture_ptr = static_cast<float*>(new_texture_buf.ptr);
uint8_t* new_mask_ptr = static_cast<uint8_t*>(new_mask_buf.ptr);
// Copy original texture and mask to new arrays
copy(data.texture_ptr, data.texture_ptr + data.texture_buf.size, new_texture_ptr);
copy(data.mask_ptr, data.mask_ptr + data.mask_buf.size, new_mask_ptr);
for(int face_idx = 0; face_idx < data.uv_idx_buf.shape[0]; ++face_idx) {
for(int k = 0; k < 3; ++k) {
int vtx_uv_idx = data.uv_idx_ptr[face_idx * 3 + k];
int vtx_idx = data.pos_idx_ptr[face_idx * 3 + k];
if(vtx_mask[vtx_idx] == 1.0f) {
auto uv_coords = calculateUVCoordinates(vtx_uv_idx, data);
for(int c = 0; c < data.texture_channel; ++c) {
new_texture_ptr[
(uv_coords.first * data.texture_width + uv_coords.second) *
data.texture_channel + c
] = vtx_color[vtx_idx][c];
}
new_mask_ptr[uv_coords.first * data.texture_width + uv_coords.second] = 255;
}
}
}
// Reshape the new arrays to match the original texture and mask shapes
new_texture.resize({data.texture_height, data.texture_width, 3});
new_mask.resize({data.texture_height, data.texture_width});
return make_pair(new_texture, new_mask);
}
// 创建顶点颜色输出数组的专用函数
pair<py::array_t<float>, py::array_t<uint8_t>> createVertexColorOutput(
const MeshData& data, const vector<int>& vtx_mask,
const vector<vector<float>>& vtx_color) {
py::array_t<float> py_vtx_color({data.vtx_num, data.texture_channel});
py::array_t<uint8_t> py_vtx_mask({data.vtx_num});
auto py_vtx_color_buf = py_vtx_color.request();
auto py_vtx_mask_buf = py_vtx_mask.request();
float* py_vtx_color_ptr = static_cast<float*>(py_vtx_color_buf.ptr);
uint8_t* py_vtx_mask_ptr = static_cast<uint8_t*>(py_vtx_mask_buf.ptr);
for(int i = 0; i < data.vtx_num; ++i) {
py_vtx_mask_ptr[i] = vtx_mask[i];
for(int c = 0; c < data.texture_channel; ++c) {
py_vtx_color_ptr[i * data.texture_channel + c] = vtx_color[i][c];
}
}
return make_pair(py_vtx_color, py_vtx_mask);
}
} // anonymous namespace
// 重构后的 meshVerticeInpaint_smooth 函数
pair<py::array_t<float>, py::array_t<uint8_t>> meshVerticeInpaint_smooth(
py::array_t<float> texture, py::array_t<uint8_t> mask, py::array_t<float> vtx_pos, py::array_t<float> vtx_uv,
py::array_t<int> pos_idx, py::array_t<int> uv_idx) {
MeshData data(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
vector<float> vtx_mask;
vector<vector<float>> vtx_color;
vector<int> uncolored_vtxs;
vector<vector<int>> G;
initializeVertexDataGeneric(data, vtx_mask, vtx_color, &uncolored_vtxs, 1.0f);
buildGraph(G, data);
// 使用通用平滑算法
performSmoothingAlgorithm<float>(data, G, vtx_mask, vtx_color, uncolored_vtxs,
[](float mask_val) { return mask_val > 0; }, // 检查是否着色
[](float& mask_val) { mask_val = 1.0f; } // 设置为已着色
);
return createOutputArrays(data, vtx_mask, vtx_color);
}
// 重构后的 meshVerticeInpaint_forward 函数
pair<py::array_t<float>, py::array_t<uint8_t>> meshVerticeInpaint_forward(
py::array_t<float> texture, py::array_t<uint8_t> mask, py::array_t<float> vtx_pos, py::array_t<float> vtx_uv,
py::array_t<int> pos_idx, py::array_t<int> uv_idx) {
MeshData data(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
vector<float> vtx_mask;
vector<vector<float>> vtx_color;
vector<vector<int>> G;
queue<int> active_vtxs;
// 使用通用初始化(不需要 uncolored_vtxs)
initializeVertexDataGeneric(data, vtx_mask, vtx_color, nullptr, 1.0f);
buildGraph(G, data);
// 收集活跃顶点
for(int i = 0; i < data.vtx_num; ++i) {
if(vtx_mask[i] == 1.0f) {
active_vtxs.push(i);
}
}
// 使用通用前向传播算法
performForwardPropagation(data, G, vtx_mask, vtx_color, active_vtxs);
return createOutputArrays(data, vtx_mask, vtx_color);
}
// 主接口函数
pair<py::array_t<float>, py::array_t<uint8_t>> meshVerticeInpaint(
py::array_t<float> texture, py::array_t<uint8_t> mask, py::array_t<float> vtx_pos, py::array_t<float> vtx_uv,
py::array_t<int> pos_idx, py::array_t<int> uv_idx, const string& method = "smooth") {
if(method == "smooth") {
return meshVerticeInpaint_smooth(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
} else if(method == "forward") {
return meshVerticeInpaint_forward(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
} else {
throw invalid_argument("Invalid method. Use 'smooth' or 'forward'.");
}
}
//============================
// 重构后的 meshVerticeColor_smooth 函数
pair<py::array_t<float>, py::array_t<uint8_t>> meshVerticeColor_smooth(
py::array_t<float> texture, py::array_t<uint8_t> mask, py::array_t<float> vtx_pos, py::array_t<float> vtx_uv,
py::array_t<int> pos_idx, py::array_t<int> uv_idx) {
MeshData data(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
vector<int> vtx_mask;
vector<vector<float>> vtx_color;
vector<int> uncolored_vtxs;
vector<vector<int>> G;
initializeVertexDataGeneric(data, vtx_mask, vtx_color, &uncolored_vtxs, 1);
buildGraph(G, data);
// 使用通用平滑算法
performSmoothingAlgorithm<int>(data, G, vtx_mask, vtx_color, uncolored_vtxs,
[](int mask_val) { return mask_val > 0; }, // 检查是否着色
[](int& mask_val) { mask_val = 2; } // 设置为已着色(值为2)
);
return createVertexColorOutput(data, vtx_mask, vtx_color);
}
// meshVerticeColor 主接口函数
pair<py::array_t<float>, py::array_t<uint8_t>> meshVerticeColor(
py::array_t<float> texture, py::array_t<uint8_t> mask, py::array_t<float> vtx_pos, py::array_t<float> vtx_uv,
py::array_t<int> pos_idx, py::array_t<int> uv_idx, const string& method = "smooth") {
if(method == "smooth") {
return meshVerticeColor_smooth(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx);
} else {
throw invalid_argument("Invalid method. Use 'smooth' or 'forward'.");
}
}
// Python绑定
PYBIND11_MODULE(mesh_inpaint_processor, m) {
m.def("meshVerticeInpaint", &meshVerticeInpaint, "A function to process mesh",
py::arg("texture"), py::arg("mask"), py::arg("vtx_pos"), py::arg("vtx_uv"),
py::arg("pos_idx"), py::arg("uv_idx"), py::arg("method") = "smooth");
m.def("meshVerticeColor", &meshVerticeColor, "A function to process mesh",
py::arg("texture"), py::arg("mask"), py::arg("vtx_pos"), py::arg("vtx_uv"),
py::arg("pos_idx"), py::arg("uv_idx"), py::arg("method") = "smooth");
}
|