File size: 56,848 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

import cv2
import torch
import trimesh
import numpy as np
from PIL import Image
import torch.nn.functional as F
from typing import Union, Optional, Tuple, List, Any, Callable
from dataclasses import dataclass
from enum import Enum
from .camera_utils import (
    transform_pos,
    get_mv_matrix,
    get_orthographic_projection_matrix,
    get_perspective_projection_matrix,
)

try:
    from .mesh_utils import load_mesh, save_mesh
except:
    print("Bpy IO CAN NOT BE Imported!!!")

try:
    from .mesh_inpaint_processor import meshVerticeInpaint  # , meshVerticeColor
except:
    print("InPaint Function CAN NOT BE Imported!!!")


class RenderMode(Enum):
    """Rendering mode enumeration."""
    NORMAL = "normal"
    POSITION = "position"
    ALPHA = "alpha"
    UV_POS = "uvpos"


class ReturnType(Enum):
    """Return type enumeration."""
    TENSOR = "th"
    NUMPY = "np"
    PIL = "pl"


class TextureType(Enum):
    """Texture type enumeration."""
    DIFFUSE = "diffuse"
    METALLIC_ROUGHNESS = "mr"
    NORMAL = "normal"


@dataclass
class RenderConfig:
    """Unified rendering configuration."""
    elev: float = 0
    azim: float = 0
    camera_distance: Optional[float] = None
    center: Optional[List[float]] = None
    resolution: Optional[Union[int, Tuple[int, int]]] = None
    bg_color: List[float] = None
    return_type: str = "th"
    
    def __post_init__(self):
        if self.bg_color is None:
            self.bg_color = [1, 1, 1]


@dataclass
class ViewState:
    """Camera view state for rendering pipeline."""
    proj_mat: torch.Tensor
    mv_mat: torch.Tensor
    pos_camera: torch.Tensor
    pos_clip: torch.Tensor
    resolution: Tuple[int, int]


def stride_from_shape(shape):
    """
    Calculate stride values from a given shape for multi-dimensional indexing.
    
    Args:
        shape: Tuple or list representing tensor dimensions
        
    Returns:
        List of stride values for each dimension
    """
    stride = [1]
    for x in reversed(shape[1:]):
        stride.append(stride[-1] * x)
    return list(reversed(stride))


def scatter_add_nd_with_count(input, count, indices, values, weights=None):
    """
    Perform scatter-add operation on N-dimensional tensors with counting.
    
    Args:
        input: Input tensor [..., C] with D dimensions + C channels
        count: Count tensor [..., 1] with D dimensions  
        indices: Index tensor [N, D] of type long
        values: Value tensor [N, C] to scatter
        weights: Optional weight tensor [N, C], defaults to ones if None
        
    Returns:
        Tuple of (updated_input, updated_count) tensors
    """
    # input: [..., C], D dimension + C channel
    # count: [..., 1], D dimension
    # indices: [N, D], long
    # values: [N, C]

    D = indices.shape[-1]
    C = input.shape[-1]
    size = input.shape[:-1]
    stride = stride_from_shape(size)

    assert len(size) == D

    input = input.view(-1, C)  # [HW, C]
    count = count.view(-1, 1)

    flatten_indices = (indices * torch.tensor(stride, dtype=torch.long, device=indices.device)).sum(-1)  # [N]

    if weights is None:
        weights = torch.ones_like(values[..., :1])

    input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
    count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)

    return input.view(*size, C), count.view(*size, 1)


def linear_grid_put_2d(H, W, coords, values, return_count=False):
    """
    Place values on a 2D grid using bilinear interpolation.
    
    Args:
        H: Grid height
        W: Grid width  
        coords: Coordinate tensor [N, 2] with values in range [0, 1]
        values: Value tensor [N, C] to place on grid
        return_count: Whether to return count information
        
    Returns:
        2D grid tensor [H, W, C] with interpolated values, optionally with count tensor
    """
    # coords: [N, 2], float in [0, 1]
    # values: [N, C]

    C = values.shape[-1]

    indices = coords * torch.tensor([H - 1, W - 1], dtype=torch.float32, device=coords.device)
    indices_00 = indices.floor().long()  # [N, 2]
    indices_00[:, 0].clamp_(0, H - 2)
    indices_00[:, 1].clamp_(0, W - 2)
    indices_01 = indices_00 + torch.tensor([0, 1], dtype=torch.long, device=indices.device)
    indices_10 = indices_00 + torch.tensor([1, 0], dtype=torch.long, device=indices.device)
    indices_11 = indices_00 + torch.tensor([1, 1], dtype=torch.long, device=indices.device)

    h = indices[..., 0] - indices_00[..., 0].float()
    w = indices[..., 1] - indices_00[..., 1].float()
    w_00 = (1 - h) * (1 - w)
    w_01 = (1 - h) * w
    w_10 = h * (1 - w)
    w_11 = h * w

    result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype)  # [H, W, C]
    count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype)  # [H, W, 1]
    weights = torch.ones_like(values[..., :1])  # [N, 1]

    result, count = scatter_add_nd_with_count(
        result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1)
    )
    result, count = scatter_add_nd_with_count(
        result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1)
    )
    result, count = scatter_add_nd_with_count(
        result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1)
    )
    result, count = scatter_add_nd_with_count(
        result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1)
    )

    if return_count:
        return result, count

    mask = count.squeeze(-1) > 0
    result[mask] = result[mask] / count[mask].repeat(1, C)

    return result


def mipmap_linear_grid_put_2d(H, W, coords, values, min_resolution=128, return_count=False):
    """
    Place values on 2D grid using mipmap-based multiresolution interpolation to fill holes.
    
    Args:
        H: Grid height
        W: Grid width
        coords: Coordinate tensor [N, 2] with values in range [0, 1] 
        values: Value tensor [N, C] to place on grid
        min_resolution: Minimum resolution for mipmap levels
        return_count: Whether to return count information
        
    Returns:
        2D grid tensor [H, W, C] with filled values, optionally with count tensor
    """
    # coords: [N, 2], float in [0, 1]
    # values: [N, C]

    C = values.shape[-1]

    result = torch.zeros(H, W, C, device=values.device, dtype=values.dtype)  # [H, W, C]
    count = torch.zeros(H, W, 1, device=values.device, dtype=values.dtype)  # [H, W, 1]

    cur_H, cur_W = H, W

    while min(cur_H, cur_W) > min_resolution:

        # try to fill the holes
        mask = count.squeeze(-1) == 0
        if not mask.any():
            break

        cur_result, cur_count = linear_grid_put_2d(cur_H, cur_W, coords, values, return_count=True)
        result[mask] = (
            result[mask]
            + F.interpolate(
                cur_result.permute(2, 0, 1).unsqueeze(0).contiguous(), (H, W), mode="bilinear", align_corners=False
            )
            .squeeze(0)
            .permute(1, 2, 0)
            .contiguous()[mask]
        )
        count[mask] = (
            count[mask]
            + F.interpolate(cur_count.view(1, 1, cur_H, cur_W), (H, W), mode="bilinear", align_corners=False).view(
                H, W, 1
            )[mask]
        )
        cur_H //= 2
        cur_W //= 2

    if return_count:
        return result, count

    mask = count.squeeze(-1) > 0
    result[mask] = result[mask] / count[mask].repeat(1, C)

    return result


# ============ Core utility functions for reducing duplication ============

def _normalize_image_input(image: Union[np.ndarray, torch.Tensor, Image.Image]) -> Union[np.ndarray, torch.Tensor]:
    """Normalize image input to consistent format."""
    if isinstance(image, Image.Image):
        return np.array(image) / 255.0
    elif isinstance(image, torch.Tensor):
        return image.cpu().numpy() if image.is_cuda else image
    return image


def _convert_texture_format(tex: Union[np.ndarray, torch.Tensor, Image.Image], 
                          texture_size: Tuple[int, int], device: str, force_set: bool = False) -> torch.Tensor:
    """Unified texture format conversion logic."""
    if not force_set:
        if isinstance(tex, np.ndarray):
            tex = Image.fromarray((tex * 255).astype(np.uint8))
        elif isinstance(tex, torch.Tensor):
            tex_np = tex.cpu().numpy()
            tex = Image.fromarray((tex_np * 255).astype(np.uint8))
        
        tex = tex.resize(texture_size).convert("RGB")
        tex = np.array(tex) / 255.0
        return torch.from_numpy(tex).to(device).float()
    else:
        if isinstance(tex, np.ndarray):
            tex = torch.from_numpy(tex)
        return tex.to(device).float()


def _format_output(image: torch.Tensor, return_type: str) -> Union[torch.Tensor, np.ndarray, Image.Image]:
    """Convert output to requested format."""
    if return_type == ReturnType.NUMPY.value:
        return image.cpu().numpy()
    elif return_type == ReturnType.PIL.value:
        img_np = image.cpu().numpy() * 255
        return Image.fromarray(img_np.astype(np.uint8))
    return image


def _ensure_resolution_format(resolution: Optional[Union[int, Tuple[int, int]]], 
                             default: Tuple[int, int]) -> Tuple[int, int]:
    """Ensure resolution is in (height, width) format."""
    if resolution is None:
        return default
    if isinstance(resolution, (int, float)):
        return (int(resolution), int(resolution))
    return tuple(resolution)


def _apply_background_mask(content: torch.Tensor, visible_mask: torch.Tensor, 
                          bg_color: List[float], device: str) -> torch.Tensor:
    """Apply background color to masked regions."""
    bg_tensor = torch.tensor(bg_color, dtype=torch.float32, device=device)
    return content * visible_mask + bg_tensor * (1 - visible_mask)


class MeshRender:
    def __init__(
        self,
        camera_distance=1.45,
        camera_type="orth",
        default_resolution=1024,
        texture_size=1024,
        use_antialias=True,
        max_mip_level=None,
        filter_mode="linear-mipmap-linear",
        bake_mode="back_sample",
        raster_mode="cr",
        shader_type="face",
        use_opengl=False,
        device="cuda",
    ):
        """
        Initialize mesh renderer with configurable parameters.
        
        Args:
            camera_distance: Distance from camera to object center
            camera_type: Type of camera projection ("orth" or "perspective") 
            default_resolution: Default rendering resolution
            texture_size: Size of texture maps
            use_antialias: Whether to use antialiasing
            max_mip_level: Maximum mipmap level for texture filtering
            filter_mode: Texture filtering mode
            bake_mode: Texture baking method ("back_sample", "linear", "mip-map")
            raster_mode: Rasterization backend ("cr" for custom rasterizer)
            shader_type: Shading type ("face" or "vertex")
            use_opengl: Whether to use OpenGL backend (deprecated)
            device: Computing device ("cuda" or "cpu")
        """

        self.device = device

        self.set_default_render_resolution(default_resolution)
        self.set_default_texture_resolution(texture_size)

        self.camera_distance = camera_distance
        self.use_antialias = use_antialias
        self.max_mip_level = max_mip_level
        self.filter_mode = filter_mode
        self.bake_angle_thres = 75
        self.set_boundary_unreliable_scale(2)
        self.bake_mode = bake_mode
        self.shader_type = shader_type

        self.raster_mode = raster_mode
        if self.raster_mode == "cr":
            import custom_rasterizer as cr

            self.raster = cr
        else:
            raise f"No raster named {self.raster_mode}"

        if camera_type == "orth":
            self.set_orth_scale(1.2)
        elif camera_type == "perspective":
            self.camera_proj_mat = get_perspective_projection_matrix(
                49.13, self.default_resolution[1] / self.default_resolution[0], 0.01, 100.0
            )
        else:
            raise f"No camera type {camera_type}"

        # Removed multiprocessing components for single-threaded version

    def _create_view_state(self, config: RenderConfig) -> ViewState:
        """Create unified view state for rendering pipeline."""
        proj = self.camera_proj_mat
        r_mv = get_mv_matrix(
            elev=config.elev,
            azim=config.azim,
            camera_distance=self.camera_distance if config.camera_distance is None else config.camera_distance,
            center=config.center,
        )
        
        pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
        pos_clip = transform_pos(proj, pos_camera)
        resolution = _ensure_resolution_format(config.resolution, self.default_resolution)
        
        return ViewState(proj, r_mv, pos_camera, pos_clip, resolution)

    def _compute_face_normals(self, triangles: torch.Tensor) -> torch.Tensor:
        """Compute face normals from triangle vertices."""
        return F.normalize(
            torch.cross(
                triangles[:, 1, :] - triangles[:, 0, :],
                triangles[:, 2, :] - triangles[:, 0, :],
                dim=-1,
            ),
            dim=-1,
        )

    def _get_normals_for_shading(self, view_state: ViewState, use_abs_coor: bool = False) -> torch.Tensor:
        """Get normals based on shader type and coordinate system."""
        if use_abs_coor:
            mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :]
        else:
            pos_camera = view_state.pos_camera[:, :3] / view_state.pos_camera[:, 3:4]
            mesh_triangles = pos_camera[self.pos_idx[:, :3], :]
        
        face_normals = self._compute_face_normals(mesh_triangles)
        
        # Common rasterization
        rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
        
        if self.shader_type == "vertex":
            vertex_normals = trimesh.geometry.mean_vertex_normals(
                vertex_count=self.vtx_pos.shape[0],
                faces=self.pos_idx.cpu(),
                face_normals=face_normals.cpu(),
            )
            vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous()
            normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
        
        elif self.shader_type == "face":
            tri_ids = rast_out[..., 3]
            tri_ids_mask = tri_ids > 0
            tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
            normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out)
            normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)]
        
        return normal, rast_out

    def _unified_render_pipeline(self, config: RenderConfig, mode: RenderMode, **kwargs) -> torch.Tensor:
        """Unified rendering pipeline for all render modes."""
        view_state = self._create_view_state(config)
        
        if mode == RenderMode.ALPHA:
            rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
            return rast_out[..., -1:].long()
        
        elif mode == RenderMode.UV_POS:
            return self.uv_feature_map(self.vtx_pos * 0.5 + 0.5)
        
        elif mode == RenderMode.NORMAL:
            use_abs_coor = kwargs.get('use_abs_coor', False)
            normalize_rgb = kwargs.get('normalize_rgb', True)
            
            normal, rast_out = self._get_normals_for_shading(view_state, use_abs_coor)
            visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
            
            result = _apply_background_mask(normal, visible_mask, config.bg_color, self.device)
            
            if normalize_rgb:
                result = (result + 1) * 0.5
            
            if self.use_antialias:
                result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx)
            
            return result[0, ...]
        
        elif mode == RenderMode.POSITION:
            rast_out, _ = self.raster_rasterize(view_state.pos_clip, self.pos_idx, resolution=view_state.resolution)
            
            tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor
            tex_position = tex_position.contiguous()
            
            position, _ = self.raster_interpolate(tex_position[None, ...], rast_out, self.pos_idx)
            visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)
            
            result = _apply_background_mask(position, visible_mask, config.bg_color, self.device)
            
            if self.use_antialias:
                result = self.raster_antialias(result, rast_out, view_state.pos_clip, self.pos_idx)
            
            return result[0, ...]

    def set_orth_scale(self, ortho_scale):
        """
        Set the orthographic projection scale and update camera projection matrix.
        
        Args:
            ortho_scale: Scale factor for orthographic projection
        """
        self.ortho_scale = ortho_scale
        self.camera_proj_mat = get_orthographic_projection_matrix(
            left=-self.ortho_scale * 0.5,
            right=self.ortho_scale * 0.5,
            bottom=-self.ortho_scale * 0.5,
            top=self.ortho_scale * 0.5,
            near=0.1,
            far=100,
        )

    def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True):
        """
        Rasterize triangular mesh using the configured rasterization backend.
        
        Args:
            pos: Vertex positions in clip space
            tri: Triangle indices
            resolution: Rendering resolution [height, width]
            ranges: Optional rendering ranges (unused in current implementation)
            grad_db: Whether to compute gradients (unused in current implementation)
            
        Returns:
            Tuple of (rasterization_output, gradient_info)
        """

        if self.raster_mode == "cr":
            rast_out_db = None
            if pos.dim() == 2:
                pos = pos.unsqueeze(0)

            # 确保pos是float32类型
            if pos.dtype == torch.float64:
                pos = pos.to(torch.float32)

            # 确保tri是int32类型
            if tri.dtype == torch.int64:
                tri = tri.to(torch.int32)

            findices, barycentric = self.raster.rasterize(pos, tri, resolution)
            rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1)
            rast_out = rast_out.unsqueeze(0)
        else:
            raise f"No raster named {self.raster_mode}"

        return rast_out, rast_out_db

    def raster_interpolate(self, uv, rast_out, uv_idx):
        """
        Interpolate texture coordinates or vertex attributes across rasterized triangles.
        
        Args:
            uv: UV coordinates or vertex attributes to interpolate
            rast_out: Rasterization output containing barycentric coordinates
            uv_idx: UV or vertex indices for triangles
            
        Returns:
            Tuple of (interpolated_values, gradient_info)
        """

        if self.raster_mode == "cr":
            textd = None
            barycentric = rast_out[0, ..., :-1]
            findices = rast_out[0, ..., -1]
            if uv.dim() == 2:
                uv = uv.unsqueeze(0)
            textc = self.raster.interpolate(uv, findices, barycentric, uv_idx)
        else:
            raise f"No raster named {self.raster_mode}"

        return textc, textd

    def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0):
        """
        Apply antialiasing to rendered colors (currently returns input unchanged).
        
        Args:
            color: Input color values
            rast: Rasterization output
            pos: Vertex positions
            tri: Triangle indices  
            topology_hash: Optional topology hash for optimization
            pos_gradient_boost: Gradient boosting factor
            
        Returns:
            Antialiased color values
        """

        if self.raster_mode == "cr":
            color = color
        else:
            raise f"No raster named {self.raster_mode}"

        return color

    def set_boundary_unreliable_scale(self, scale):
        """
        Set the kernel size for boundary unreliable region detection during texture baking.
        
        Args:
            scale: Scale factor relative to 512 resolution baseline
        """
        self.bake_unreliable_kernel_size = int(
            (scale / 512) * max(self.default_resolution[0], self.default_resolution[1])
        )

    def load_mesh(
        self,
        mesh,
        scale_factor=1.15,
        auto_center=True,
    ):
        """
        Load mesh from file and set up rendering data structures.
        
        Args:
            mesh: Path to mesh file or mesh object
            scale_factor: Scaling factor for mesh normalization
            auto_center: Whether to automatically center the mesh
        """
        vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh)
        self.set_mesh(
            vtx_pos, pos_idx, vtx_uv=vtx_uv, uv_idx=uv_idx, scale_factor=scale_factor, auto_center=auto_center
        )
        if texture_data is not None:
            self.set_texture(texture_data)

    def save_mesh(self, mesh_path, downsample=False):
        """
        Save current mesh with textures to file.
        
        Args:
            mesh_path: Output file path
            downsample: Whether to downsample textures by half
        """

        vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh(normalize=False)
        texture_data = self.get_texture()
        texture_metallic, texture_roughness = self.get_texture_mr()
        texture_normal = self.get_texture_normal()
        if downsample:
            texture_data = cv2.resize(texture_data, (texture_data.shape[1] // 2, texture_data.shape[0] // 2))
            if texture_metallic is not None:
                texture_metallic = cv2.resize(
                    texture_metallic, (texture_metallic.shape[1] // 2, texture_metallic.shape[0] // 2)
                )
            if texture_roughness is not None:
                texture_roughness = cv2.resize(
                    texture_roughness, (texture_roughness.shape[1] // 2, texture_roughness.shape[0] // 2)
                )
            if texture_normal is not None:
                texture_normal = cv2.resize(
                    texture_normal, (texture_normal.shape[1] // 2, texture_normal.shape[0] // 2)
                )

        save_mesh(
            mesh_path,
            vtx_pos,
            pos_idx,
            vtx_uv,
            uv_idx,
            texture_data,
            metallic=texture_metallic,
            roughness=texture_roughness,
            normal=texture_normal,
        )

    def set_mesh(self, vtx_pos, pos_idx, vtx_uv=None, uv_idx=None, scale_factor=1.15, auto_center=True):
        """
        Set mesh geometry data and perform coordinate transformations.
        
        Args:
            vtx_pos: Vertex positions [N, 3]
            pos_idx: Triangle vertex indices [F, 3]
            vtx_uv: UV coordinates [N, 2], optional
            uv_idx: Triangle UV indices [F, 3], optional  
            scale_factor: Scaling factor for mesh normalization
            auto_center: Whether to automatically center and scale the mesh
        """
        self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device)
        self.pos_idx = torch.from_numpy(pos_idx).to(self.device)

        # 确保顶点位置是float32类型
        if self.vtx_pos.dtype == torch.float64:
            self.vtx_pos = self.vtx_pos.to(torch.float32)

        # 确保索引类型为int32
        if self.pos_idx.dtype == torch.int64:
            self.pos_idx = self.pos_idx.to(torch.int32)

        if (vtx_uv is not None) and (uv_idx is not None):
            self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device)
            self.uv_idx = torch.from_numpy(uv_idx).to(self.device)

            # 确保UV坐标是float32类型
            if self.vtx_uv.dtype == torch.float64:
                self.vtx_uv = self.vtx_uv.to(torch.float32)

            # 确保UV索引类型为int32
            if self.uv_idx.dtype == torch.int64:
                self.uv_idx = self.uv_idx.to(torch.int32)
        else:
            self.vtx_uv = None
            self.uv_idx = None

        self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]]
        self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]]
        if (vtx_uv is not None) and (uv_idx is not None):
            self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1]
            pass

        if auto_center:
            max_bb = (self.vtx_pos - 0).max(0)[0]
            min_bb = (self.vtx_pos - 0).min(0)[0]
            center = (max_bb + min_bb) / 2
            scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0
            self.vtx_pos = (self.vtx_pos - center) * (scale_factor / float(scale))
            self.scale_factor = scale_factor
            self.mesh_normalize_scale_factor = scale_factor / float(scale)
            self.mesh_normalize_scale_center = center.unsqueeze(0).cpu().numpy()
        else:
            self.scale_factor = 1.0
            self.mesh_normalize_scale_factor = 1.0
            self.mesh_normalize_scale_center = np.array([[0, 0, 0]])

        if uv_idx is not None:
            self.extract_textiles()

    def _set_texture_unified(self, tex: Union[np.ndarray, torch.Tensor, Image.Image], 
                           texture_type: TextureType, force_set: bool = False):
        """Unified texture setting method."""
        converted_tex = _convert_texture_format(tex, self.texture_size, self.device, force_set)
        
        if texture_type == TextureType.DIFFUSE:
            self.tex = converted_tex
        elif texture_type == TextureType.METALLIC_ROUGHNESS:
            self.tex_mr = converted_tex
        elif texture_type == TextureType.NORMAL:
            self.tex_normalMap = converted_tex

    def set_texture(self, tex, force_set=False):
        """Set the main diffuse texture for the mesh."""
        self._set_texture_unified(tex, TextureType.DIFFUSE, force_set)

    def set_texture_mr(self, mr, force_set=False):
        """Set metallic-roughness texture for PBR rendering."""
        self._set_texture_unified(mr, TextureType.METALLIC_ROUGHNESS, force_set)

    def set_texture_normal(self, normal, force_set=False):
        """Set normal map texture for surface detail."""
        self._set_texture_unified(normal, TextureType.NORMAL, force_set)

    def set_default_render_resolution(self, default_resolution):
        """
        Set the default resolution for rendering operations.
        
        Args:
            default_resolution: Resolution as int (square) or tuple (height, width)
        """
        if isinstance(default_resolution, int):
            default_resolution = (default_resolution, default_resolution)
        self.default_resolution = default_resolution

    def set_default_texture_resolution(self, texture_size):
        """
        Set the default texture resolution for UV mapping operations.
        
        Args:
            texture_size: Texture size as int (square) or tuple (height, width)
        """
        if isinstance(texture_size, int):
            texture_size = (texture_size, texture_size)
        self.texture_size = texture_size

    def get_face_num(self):
        """
        Get the number of triangular faces in the mesh.
        
        Returns:
            Number of faces as integer
        """
        return self.pos_idx.shape[0]

    def get_vertex_num(self):
        """
        Get the number of vertices in the mesh.
        
        Returns:
            Number of vertices as integer
        """
        return self.vtx_pos.shape[0]

    def get_face_areas(self, from_one_index=False):
        """
        Calculate the area of each triangular face in the mesh.
        
        Args:
            from_one_index: If True, insert zero at beginning for 1-indexed face IDs
            
        Returns:
            Numpy array of face areas
        """
        v0 = self.vtx_pos[self.pos_idx[:, 0], :]
        v1 = self.vtx_pos[self.pos_idx[:, 1], :]
        v2 = self.vtx_pos[self.pos_idx[:, 2], :]

        # 计算两个边向量
        edge1 = v1 - v0
        edge2 = v2 - v0

        # 计算叉积的模长的一半即为面积
        areas = torch.norm(torch.cross(edge1, edge2, dim=-1), dim=-1) * 0.5

        areas = areas.cpu().numpy()

        if from_one_index:
            # 在数组前面插入一个0,因为三角片索引是从1开始的
            areas = np.insert(areas, 0, 0)

        return areas

    def get_mesh(self, normalize=True):
        """
        Get mesh geometry with optional coordinate denormalization.
        
        Args:
            normalize: Whether to keep normalized coordinates (True) or restore original scale (False)
            
        Returns:
            Tuple of (vertex_positions, face_indices, uv_coordinates, uv_indices)
        """
        vtx_pos = self.vtx_pos.cpu().numpy()
        pos_idx = self.pos_idx.cpu().numpy()
        vtx_uv = self.vtx_uv.cpu().numpy()
        uv_idx = self.uv_idx.cpu().numpy()

        # 坐标变换的逆变换
        if not normalize:
            vtx_pos = vtx_pos / self.mesh_normalize_scale_factor
            vtx_pos = vtx_pos + self.mesh_normalize_scale_center
        vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]]
        vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]]

        vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1]
        return vtx_pos, pos_idx, vtx_uv, uv_idx

    def get_texture(self):
        """
        Get the current diffuse texture as numpy array.
        
        Returns:
            Texture as numpy array in range [0, 1]
        """
        return self.tex.cpu().numpy()

    def get_texture_mr(self):
        """
        Get metallic and roughness textures as separate channels.
        
        Returns:
            Tuple of (metallic_texture, roughness_texture) as numpy arrays, or (None, None) if not set
        """
        metallic, roughness = None, None
        if hasattr(self, "tex_mr"):
            mr = self.tex_mr.cpu().numpy()
            metallic = np.repeat(mr[:, :, 0:1], repeats=3, axis=2)
            roughness = np.repeat(mr[:, :, 1:2], repeats=3, axis=2)
        return metallic, roughness

    def get_texture_normal(self):
        """
        Get the normal map texture as numpy array.
        
        Returns:
            Normal map as numpy array, or None if not set
        """
        normal = None
        if hasattr(self, "tex_normalMap"):
            normal = self.tex_normalMap.cpu().numpy()
        return normal

    def to(self, device):
        """
        Move all tensor attributes to the specified device.
        
        Args:
            device: Target device ("cuda", "cpu", etc.)
        """
        self.device = device

        for attr_name in dir(self):
            attr_value = getattr(self, attr_name)
            if isinstance(attr_value, torch.Tensor):
                setattr(self, attr_name, attr_value.to(self.device))

    def color_rgb_to_srgb(self, image):
        """
        Convert RGB color values to sRGB color space using gamma correction.
        
        Args:
            image: Input image as PIL Image, numpy array, or torch tensor
            
        Returns:
            sRGB corrected image in same format as input
        """
        if isinstance(image, Image.Image):
            image_rgb = torch.tesnor(np.array(image) / 255.0).float().to(self.device)
        elif isinstance(image, np.ndarray):
            image_rgb = torch.tensor(image).float()
        else:
            image_rgb = image.to(self.device)

        image_srgb = torch.where(
            image_rgb <= 0.0031308, 12.92 * image_rgb, 1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055
        )

        if isinstance(image, Image.Image):
            image_srgb = Image.fromarray((image_srgb.cpu().numpy() * 255).astype(np.uint8))
        elif isinstance(image, np.ndarray):
            image_srgb = image_srgb.cpu().numpy()
        else:
            image_srgb = image_srgb.to(image.device)

        return image_srgb

    def extract_textiles(self):
        """
        Extract texture-space position and normal information by rasterizing 
        the mesh in UV coordinate space. Creates texture-space geometry mappings.
        """

        vnum = self.vtx_uv.shape[0]
        vtx_uv = torch.cat(
            (self.vtx_uv, torch.zeros_like(self.vtx_uv[:, 0:1]), torch.ones_like(self.vtx_uv[:, 0:1])), axis=1
        )
        vtx_uv = vtx_uv.view(1, vnum, 4) * 2 - 1

        rast_out, rast_out_db = self.raster_rasterize(vtx_uv, self.uv_idx, resolution=self.texture_size)
        position, _ = self.raster_interpolate(self.vtx_pos, rast_out, self.pos_idx)

        v0 = self.vtx_pos[self.pos_idx[:, 0], :]
        v1 = self.vtx_pos[self.pos_idx[:, 1], :]
        v2 = self.vtx_pos[self.pos_idx[:, 2], :]
        face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
        vertex_normals = trimesh.geometry.mean_vertex_normals(
            vertex_count=self.vtx_pos.shape[0],
            faces=self.pos_idx.cpu(),
            face_normals=face_normals.cpu(),
        )
        vertex_normals = torch.from_numpy(vertex_normals).to(self.vtx_pos).contiguous()
        position_normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
        visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ..., 0]
        position = position[0]
        position_normal = position_normal[0]
        tri_ids = rast_out[0, ..., 3]
        tri_ids_mask = tri_ids > 0
        tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
        position_normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[
            tri_ids[tri_ids_mask].view(-1)
        ]

        row = torch.arange(position.shape[0]).to(visible_mask.device)
        col = torch.arange(position.shape[1]).to(visible_mask.device)
        grid_i, grid_j = torch.meshgrid(row, col, indexing="ij")

        mask = visible_mask.reshape(-1) > 0
        position = position.reshape(-1, 3)[mask]
        position_normal = position_normal.reshape(-1, 3)[mask]
        position = torch.cat((position, torch.ones_like(position[:, :1])), axis=-1)
        grid = torch.stack((grid_i, grid_j), -1).reshape(-1, 2)[mask]

        texture_indices = (
            torch.ones(self.texture_size[0], self.texture_size[1], device=self.device, dtype=torch.long) * -1
        )
        texture_indices.view(-1)[grid[:, 0] * self.texture_size[1] + grid[:, 1]] = torch.arange(grid.shape[0]).to(
            device=self.device, dtype=torch.long
        )

        self.tex_position = position
        self.tex_normal = position_normal
        self.tex_grid = grid
        self.texture_indices = texture_indices

    def render_normal(self, elev, azim, camera_distance=None, center=None, resolution=None,
                     bg_color=[1, 1, 1], use_abs_coor=False, normalize_rgb=True, return_type="th"):
        """Render surface normals of the mesh from specified viewpoint."""
        config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type)
        image = self._unified_render_pipeline(config, RenderMode.NORMAL, 
                                            use_abs_coor=use_abs_coor, normalize_rgb=normalize_rgb)
        return _format_output(image, return_type)

    def convert_normal_map(self, image):
        """
        Convert normal map from standard format to renderer's coordinate system.
        Applies coordinate transformations for proper normal interpretation.
        
        Args:
            image: Input normal map as PIL Image or numpy array
            
        Returns:
            Converted normal map as PIL Image
        """
        # blue is front, red is left, green is top
        if isinstance(image, Image.Image):
            image = np.array(image)
        mask = (image == [255, 255, 255]).all(axis=-1)

        image = (image / 255.0) * 2.0 - 1.0

        image[..., [1]] = -image[..., [1]]
        image[..., [1, 2]] = image[..., [2, 1]]
        image[..., [0]] = -image[..., [0]]

        image = (image + 1.0) * 0.5

        image = (image * 255).astype(np.uint8)
        image[mask] = [127, 127, 255]

        return Image.fromarray(image)

    def render_position(self, elev, azim, camera_distance=None, center=None, resolution=None, 
                       bg_color=[1, 1, 1], return_type="th"):
        """Render world-space positions of visible mesh surface points."""
        config = RenderConfig(elev, azim, camera_distance, center, resolution, bg_color, return_type)
        image = self._unified_render_pipeline(config, RenderMode.POSITION)
        
        if return_type == ReturnType.PIL.value:
            image = image.squeeze(-1).cpu().numpy() * 255
            return Image.fromarray(image.astype(np.uint8))
        return _format_output(image, return_type)

    def render_uvpos(self, return_type="th"):
        """Render vertex positions mapped to UV texture space."""
        config = RenderConfig(return_type=return_type)
        image = self._unified_render_pipeline(config, RenderMode.UV_POS)
        return _format_output(image, return_type)

    def render_alpha(self, elev, azim, camera_distance=None, center=None, resolution=None, return_type="th"):
        """Render binary alpha mask indicating visible mesh regions."""
        config = RenderConfig(elev, azim, camera_distance, center, resolution, return_type=return_type)
        image = self._unified_render_pipeline(config, RenderMode.ALPHA)
        
        if return_type == ReturnType.PIL.value:
            raise Exception("PIL format not supported for alpha rendering")
        return _format_output(image, return_type)

    def uv_feature_map(self, vert_feat, bg=None):
        """
        Map per-vertex features to UV texture space using mesh topology.
        
        Args:
            vert_feat: Per-vertex feature tensor [N, C]
            bg: Background value for unmapped regions (optional)
            
        Returns:
            Feature map in UV texture space [H, W, C]
        """
        vtx_uv = self.vtx_uv * 2 - 1.0
        vtx_uv = torch.cat([vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0)
        vtx_uv[..., -1] = 1
        uv_idx = self.uv_idx
        rast_out, rast_out_db = self.raster_rasterize(vtx_uv, uv_idx, resolution=self.texture_size)
        feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx)
        feat_map = feat_map[0, ...]
        if bg is not None:
            visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]
            feat_map[visible_mask == 0] = bg
        return feat_map

    def render_sketch_from_geometry(self, normal_image, depth_image):
        """
        Generate sketch-style edge image from rendered normal and depth maps.
        
        Args:
            normal_image: Rendered normal map tensor
            depth_image: Rendered depth map tensor
            
        Returns:
            Binary edge sketch image as tensor
        """
        normal_image_np = normal_image.cpu().numpy()
        depth_image_np = depth_image.cpu().numpy()

        normal_image_np = (normal_image_np * 255).astype(np.uint8)
        depth_image_np = (depth_image_np * 255).astype(np.uint8)
        normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY)

        normal_edges = cv2.Canny(normal_image_np, 80, 150)
        depth_edges = cv2.Canny(depth_image_np, 30, 80)

        combined_edges = np.maximum(normal_edges, depth_edges)

        sketch_image = torch.from_numpy(combined_edges).to(normal_image.device).float() / 255.0
        sketch_image = sketch_image.unsqueeze(-1)

        return sketch_image

    def render_sketch_from_depth(self, depth_image):
        """
        Generate sketch-style edge image from depth map using edge detection.
        
        Args:
            depth_image: Input depth map tensor
            
        Returns:
            Binary edge sketch image as tensor
        """
        depth_image_np = depth_image.cpu().numpy()
        depth_image_np = (depth_image_np * 255).astype(np.uint8)
        depth_edges = cv2.Canny(depth_image_np, 30, 80)
        combined_edges = depth_edges
        sketch_image = torch.from_numpy(combined_edges).to(depth_image.device).float() / 255.0
        sketch_image = sketch_image.unsqueeze(-1)
        return sketch_image

    def back_project(self, image, elev, azim, camera_distance=None, center=None, method=None):
        """
        Back-project a rendered image onto the mesh's UV texture space.
        Handles visibility, viewing angle, and boundary detection for texture baking.
        
        Args:
            image: Input image to back-project (PIL Image, numpy array, or tensor)
            elev: Camera elevation angle in degrees used for rendering
            azim: Camera azimuth angle in degrees used for rendering
            camera_distance: Camera distance (uses default if None)
            center: Camera focus center (uses origin if None) 
            method: Back-projection method ("linear", "mip-map", "back_sample", uses default if None)
            
        Returns:
            Tuple of (texture, cosine_map, boundary_map) tensors in UV space
        """

        if isinstance(image, Image.Image):
            image = torch.tensor(np.array(image) / 255.0)
        elif isinstance(image, np.ndarray):
            image = torch.tensor(image)
        if image.dim() == 2:
            image = image.unsqueeze(-1)
        image = image.float().to(self.device)
        resolution = image.shape[:2]
        channel = image.shape[-1]
        texture = torch.zeros(self.texture_size + (channel,)).to(self.device)
        cos_map = torch.zeros(self.texture_size + (1,)).to(self.device)

        proj = self.camera_proj_mat
        r_mv = get_mv_matrix(
            elev=elev,
            azim=azim,
            camera_distance=self.camera_distance if camera_distance is None else camera_distance,
            center=center,
        )
        pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True)
        pos_clip = transform_pos(proj, pos_camera)
        pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4]

        v0 = pos_camera[self.pos_idx[:, 0], :]
        v1 = pos_camera[self.pos_idx[:, 1], :]
        v2 = pos_camera[self.pos_idx[:, 2], :]
        face_normals = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)

        tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous()
        rast_out, rast_out_db = self.raster_rasterize(pos_clip, self.pos_idx, resolution=resolution)
        visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...]

        if self.shader_type == "vertex":
            vertex_normals = trimesh.geometry.mean_vertex_normals(
                vertex_count=self.vtx_pos.shape[0],
                faces=self.pos_idx.cpu(),
                face_normals=face_normals.cpu(),
            )
            vertex_normals = torch.from_numpy(vertex_normals).float().to(self.device).contiguous()
            normal, _ = self.raster_interpolate(vertex_normals[None, ...], rast_out, self.pos_idx)
        elif self.shader_type == "face":
            tri_ids = rast_out[..., 3]
            tri_ids_mask = tri_ids > 0
            tri_ids = ((tri_ids - 1) * tri_ids_mask).long()
            normal = torch.zeros(rast_out.shape[0], rast_out.shape[1], rast_out.shape[2], 3).to(rast_out)
            normal.reshape(-1, 3)[tri_ids_mask.view(-1)] = face_normals.reshape(-1, 3)[tri_ids[tri_ids_mask].view(-1)]

        normal = normal[0, ...]
        uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx)
        depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx)
        depth = depth[0, ...]

        depth_max, depth_min = depth[visible_mask > 0].max(), depth[visible_mask > 0].min()
        depth_normalized = (depth - depth_min) / (depth_max - depth_min)
        depth_image = depth_normalized * visible_mask  # Mask out background.

        sketch_image = self.render_sketch_from_depth(depth_image)

        lookat = torch.tensor([[0, 0, -1]], device=self.device)
        cos_image = torch.nn.functional.cosine_similarity(lookat, normal.view(-1, 3))
        cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1)

        cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi)
        cos_image[cos_image < cos_thres] = 0

        # shrink
        if self.bake_unreliable_kernel_size > 0:
            kernel_size = self.bake_unreliable_kernel_size * 2 + 1
            kernel = torch.ones((1, 1, kernel_size, kernel_size), dtype=torch.float32).to(sketch_image.device)

            visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float()
            visible_mask = F.conv2d(1.0 - visible_mask, kernel, padding=kernel_size // 2)
            visible_mask = 1.0 - (visible_mask > 0).float()  # 二值化
            visible_mask = visible_mask.squeeze(0).permute(1, 2, 0)

            sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
            sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2)
            sketch_image = (sketch_image > 0).float()  # 二值化
            sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
            visible_mask = visible_mask * (sketch_image < 0.5)

        cos_image[visible_mask == 0] = 0

        method = self.bake_mode if method is None else method

        if method == "linear":
            proj_mask = (visible_mask != 0).view(-1)
            uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
            image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
            cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]
            sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask]

            texture = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image)
            cos_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image)
            boundary_map = linear_grid_put_2d(self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image)
        elif method == "mip-map":
            proj_mask = (visible_mask != 0).view(-1)
            uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask]
            image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask]
            cos_image = cos_image.contiguous().view(-1, 1)[proj_mask]

            texture = mipmap_linear_grid_put_2d(
                self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image, min_resolution=128
            )
            cos_map = mipmap_linear_grid_put_2d(
                self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image, min_resolution=256
            )

            if self.vtx_map is not None:
                vertex_normals = vertex_normals[self.vtx_map, :]
            normal_map = self.uv_feature_map(vertex_normals)
            cos_map_uv = torch.nn.functional.cosine_similarity(lookat, normal_map.view(-1, 3))  # .abs()
            cos_map_uv = cos_map_uv.view(1, 1, normal_map.shape[0], normal_map.shape[1])
            cos_map_uv = torch.nn.functional.max_pool2d(cos_map_uv, kernel_size=3, stride=1, padding=1)
            cos_map_uv = cos_map_uv.reshape(self.texture_size[0], self.texture_size[1], 1)
            cos_map_uv[cos_map_uv < cos_thres] = 0
            # cos_map = torch.min(cos_map, cos_map_uv)
            cos_map[cos_map_uv < cos_thres] = 0
        elif method == "back_sample":

            img_proj = torch.from_numpy(
                np.array(((proj[0, 0], 0, 0, 0), (0, proj[1, 1], 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)))
            ).to(self.tex_position)
            w2c = torch.from_numpy(r_mv).to(self.tex_position)
            v_proj = self.tex_position @ w2c.T @ img_proj
            inner_mask = (v_proj[:, 0] <= 1.0) & (v_proj[:, 0] >= -1.0) & (v_proj[:, 1] <= 1.0) & (v_proj[:, 1] >= -1.0)
            inner_valid_idx = torch.where(inner_mask)[0].long()
            img_x = torch.clamp(
                ((v_proj[:, 0].clamp(-1, 1) * 0.5 + 0.5) * (resolution[0])).long(), 0, resolution[0] - 1
            )
            img_y = torch.clamp(
                ((v_proj[:, 1].clamp(-1, 1) * 0.5 + 0.5) * (resolution[1])).long(), 0, resolution[1] - 1
            )

            indices = img_y * resolution[0] + img_x
            sampled_z = depth.reshape(-1)[indices]
            sampled_m = visible_mask.reshape(-1)[indices]
            v_z = v_proj[:, 2]

            sampled_w = cos_image.reshape(-1)[indices]
            depth_thres = 3e-3

            # valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) * (sampled_m*sampled_w>0))[0]
            valid_idx = torch.where((torch.abs(v_z - sampled_z) < depth_thres) & (sampled_m * sampled_w > 0))[0]

            intersection_mask = torch.isin(valid_idx, inner_valid_idx)
            valid_idx = valid_idx[intersection_mask].to(inner_valid_idx)

            indices = indices[valid_idx]
            sampled_b = sketch_image.reshape(-1)[indices]
            sampled_w = sampled_w[valid_idx]

            # bilinear sampling rgb
            wx = ((v_proj[:, 0] * 0.5 + 0.5) * resolution[0] - img_x)[valid_idx].reshape(-1, 1)
            wy = ((v_proj[:, 1] * 0.5 + 0.5) * resolution[1] - img_y)[valid_idx].reshape(-1, 1)
            img_x = img_x[valid_idx]
            img_y = img_y[valid_idx]
            img_x_r = torch.clamp(img_x + 1, 0, resolution[0] - 1)
            img_y_r = torch.clamp(img_y + 1, 0, resolution[1] - 1)
            indices_lr = img_y * resolution[0] + img_x_r
            indices_rl = img_y_r * resolution[0] + img_x
            indices_rr = img_y_r * resolution[0] + img_x_r
            rgb = image.reshape(-1, channel)
            sampled_rgb = (rgb[indices] * (1 - wx) + rgb[indices_lr] * wx) * (1 - wy) + (
                rgb[indices_rl] * (1 - wx) + rgb[indices_rr] * wx
            ) * wy

            # return sampled_rgb, sampled_w, sampled_b, valid_idx
            texture = torch.zeros(self.texture_size[0], self.texture_size[1], channel, device=self.device).reshape(
                -1, channel
            )
            cos_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1)
            boundary_map = torch.zeros(self.texture_size[0], self.texture_size[1], 1, device=self.device).reshape(-1)

            valid_tex_indices = self.tex_grid[valid_idx, 0] * self.texture_size[1] + self.tex_grid[valid_idx, 1]
            texture[valid_tex_indices, :] = sampled_rgb
            cos_map[valid_tex_indices] = sampled_w
            boundary_map[valid_tex_indices] = sampled_b

            texture = texture.view(self.texture_size[0], self.texture_size[1], channel)
            cos_map = cos_map.view(self.texture_size[0], self.texture_size[1], 1)
            # texture = torch.clamp(texture,0,1)

        else:
            raise f"No bake mode {method}"
        return texture, cos_map, boundary_map

    def bake_texture(self, colors, elevs, azims, camera_distance=None, center=None, exp=6, weights=None):
        """
        Bake multiple view images into a single UV texture using weighted blending.
        
        Args:
            colors: List of input images (tensors, numpy arrays, or PIL Images)
            elevs: List of elevation angles for each view
            azims: List of azimuth angles for each view
            camera_distance: Camera distance (uses default if None)
            center: Camera focus center (uses origin if None)
            exp: Exponent for cosine weighting (higher values favor front-facing views)
            weights: Optional per-view weights (defaults to 1.0 for all views)
            
        Returns:
            Tuple of (merged_texture, trust_map) tensors in UV space
        """
        if isinstance(colors, torch.Tensor):
            colors = [colors[i, ...].float().permute(1, 2, 0) for i in range(colors.shape[0])]
        else:
            for i in range(len(colors)):
                if isinstance(colors[i], Image.Image):
                    colors[i] = torch.tensor(np.array(colors[i]) / 255.0, device=self.device).float()
        if weights is None:
            weights = [1.0 for _ in range(len(colors))]
        textures = []
        cos_maps = []
        for color, elev, azim, weight in zip(colors, elevs, azims, weights):
            texture, cos_map, _ = self.back_project(color, elev, azim, camera_distance, center)
            cos_map = weight * (cos_map**exp)
            textures.append(texture)
            cos_maps.append(cos_map)

        texture_merge, trust_map_merge = self.fast_bake_texture(textures, cos_maps)
        return texture_merge, trust_map_merge

    @torch.no_grad()
    def fast_bake_texture(self, textures, cos_maps):
        """
        Efficiently merge multiple textures using cosine-weighted blending.
        Optimizes by skipping views that don't contribute new information.
        
        Args:
            textures: List of texture tensors to merge
            cos_maps: List of corresponding cosine weight maps
            
        Returns:
            Tuple of (merged_texture, valid_mask) tensors
        """

        channel = textures[0].shape[-1]
        texture_merge = torch.zeros(self.texture_size + (channel,)).to(self.device)
        trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device)
        for texture, cos_map in zip(textures, cos_maps):
            view_sum = (cos_map > 0).sum()
            painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
            if painted_sum / view_sum > 0.99:
                continue
            texture_merge += texture * cos_map
            trust_map_merge += cos_map
        texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)

        return texture_merge, trust_map_merge > 1e-8

    @torch.no_grad()
    def uv_inpaint(self, texture, mask, vertex_inpaint=True, method="NS", return_float=False):
        """
        Inpaint missing regions in UV texture using mesh-aware and traditional methods.
        
        Args:
            texture: Input texture as tensor, numpy array, or PIL Image
            mask: Binary mask indicating regions to inpaint (1 = keep, 0 = inpaint)
            vertex_inpaint: Whether to use mesh vertex connectivity for inpainting
            method: Inpainting method ("NS" for Navier-Stokes)
            return_float: Whether to return float values (False returns uint8)
            
        Returns:
            Inpainted texture as numpy array
        """

        if isinstance(texture, torch.Tensor):
            texture_np = texture.cpu().numpy()
        elif isinstance(texture, np.ndarray):
            texture_np = texture
        elif isinstance(texture, Image.Image):
            texture_np = np.array(texture) / 255.0

        if isinstance(mask, torch.Tensor):
            mask = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)

        if vertex_inpaint:
            vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh()
            texture_np, mask = meshVerticeInpaint(texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx)

        if method == "NS":
            texture_np = cv2.inpaint((texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS)
            assert return_float == False

        return texture_np