File size: 33,717 Bytes
600759a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
# except for the third-party components listed below.
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
# in the repsective licenses of these third-party components.
# Users must comply with all terms and conditions of original licenses of these third-party
# components and must ensure that the usage of the third party components adheres to
# all relevant laws and regulations.

# For avoidance of doubts, Hunyuan 3D means the large language models and
# their software and algorithms, including trained model weights, parameters (including
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
# fine-tuning enabling code and other elements of the foregoing made publicly available
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.

from typing import Any, Dict, Optional
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers

import numpy
import torch
import torch.utils.checkpoint
import torch.distributed
import numpy as np
import transformers
from PIL import Image
from einops import rearrange
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from typing import Any, Callable, Dict, List, Optional, Union, Tuple

import diffusers
from diffusers import (
    AutoencoderKL,
    DiffusionPipeline,
    UNet2DConditionModel,
)
from diffusers.image_processor import VaeImageProcessor

from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
    StableDiffusionPipeline,
    retrieve_timesteps,
    rescale_noise_cfg,
)

from diffusers.utils import deprecate
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from .unet.modules import UNet2p5DConditionModel
from .unet.attn_processor import SelfAttnProcessor2_0, RefAttnProcessor2_0, PoseRoPEAttnProcessor2_0

__all__ = [
    "HunyuanPaintPipeline",
    "UNet2p5DConditionModel",
    "SelfAttnProcessor2_0",
    "RefAttnProcessor2_0",
    "PoseRoPEAttnProcessor2_0",
]


def to_rgb_image(maybe_rgba: Image.Image):
    if maybe_rgba.mode == "RGB":
        return maybe_rgba
    elif maybe_rgba.mode == "RGBA":
        rgba = maybe_rgba
        img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
        img = Image.fromarray(img, "RGB")
        img.paste(rgba, mask=rgba.getchannel("A"))
        return img
    else:
        raise ValueError("Unsupported image type.", maybe_rgba.mode)


class HunyuanPaintPipeline(StableDiffusionPipeline):

    """Custom pipeline for multiview PBR texture generation.
    
    Extends Stable Diffusion with:
    - Material-specific conditioning
    - Multiview processing
    - Position-aware attention
    - 2.5D UNet integration
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        feature_extractor: CLIPImageProcessor,
        safety_checker=None,
        use_torch_compile=False,
    ):
        DiffusionPipeline.__init__(self)

        safety_checker = None
        self.register_modules(
            vae=torch.compile(vae) if use_torch_compile else vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=torch.compile(feature_extractor) if use_torch_compile else feature_extractor,
        )

        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        if isinstance(self.unet, UNet2DConditionModel):
            self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler)

    def eval(self):
        self.unet.eval()
        self.vae.eval()

    def set_pbr_settings(self, pbr_settings: List[str]):
        self.pbr_settings = pbr_settings

    def set_learned_parameters(self):

        """Configures parameter freezing strategy.
        
        Freezes:
        - Standard attention layers
        - Dual-stream reference UNet
        
        Unfreezes:
        - Material-specific parameters
        - DINO integration components
        """

        freezed_names = ["attn1", "unet_dual"]
        added_learned_names = ["albedo", "mr", "dino"]

        for name, params in self.unet.named_parameters():
            if any(freeze_name in name for freeze_name in freezed_names) and all(
                learned_name not in name for learned_name in added_learned_names
            ):
                params.requires_grad = False
            else:
                params.requires_grad = True

    def prepare(self):
        if isinstance(self.unet, UNet2DConditionModel):
            self.unet = UNet2p5DConditionModel(self.unet, None, self.scheduler).eval()

    @torch.no_grad()
    def encode_images(self, images):

        """Encodes multiview image batches into latent space.
        
        Args:
            images: Input images [B, N_views, C, H, W]
            
        Returns:
            torch.Tensor: Latent representations [B, N_views, C, H_latent, W_latent]
        """

        B = images.shape[0]
        images = rearrange(images, "b n c h w -> (b n) c h w")

        dtype = next(self.vae.parameters()).dtype
        images = (images - 0.5) * 2.0
        posterior = self.vae.encode(images.to(dtype)).latent_dist
        latents = posterior.sample() * self.vae.config.scaling_factor

        latents = rearrange(latents, "(b n) c h w -> b n c h w", b=B)
        return latents

    @torch.no_grad()
    def __call__(
        self,
        images=None,
        prompt=None,
        negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
        *args,
        num_images_per_prompt: Optional[int] = 1,
        guidance_scale=3.0,
        output_type: Optional[str] = "pil",
        width=512,
        height=512,
        num_inference_steps=15,
        return_dict=True,
        sync_condition=None,
        **cached_condition,
    ):

        """Main generation method for multiview PBR textures.
        
        Steps:
        1. Input validation and preparation
        2. Reference image encoding
        3. Condition processing (normal/position maps)
        4. Prompt embedding setup
        5. Classifier-free guidance preparation
        6. Diffusion sampling loop
        
        Args:
            images: List of reference PIL images
            prompt: Text prompt (overridden by learned embeddings)
            cached_condition: Dictionary containing:
                - images_normal: Normal maps (PIL or tensor)
                - images_position: Position maps (PIL or tensor)
            
        Returns:
            List[PIL.Image]: Generated multiview PBR textures
        """

        self.prepare()
        if images is None:
            raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
        assert not isinstance(images, torch.Tensor)

        if not isinstance(images, List):
            images = [images]

        images = [to_rgb_image(image) for image in images]
        images_vae = [torch.tensor(np.array(image) / 255.0) for image in images]
        images_vae = [image_vae.unsqueeze(0).permute(0, 3, 1, 2).unsqueeze(0) for image_vae in images_vae]
        images_vae = torch.cat(images_vae, dim=1)
        images_vae = images_vae.to(device=self.vae.device, dtype=self.unet.dtype)

        batch_size = images_vae.shape[0]
        N_ref = images_vae.shape[1]

        assert batch_size == 1
        assert num_images_per_prompt == 1

        if self.unet.use_ra:
            ref_latents = self.encode_images(images_vae)
            cached_condition["ref_latents"] = ref_latents

        def convert_pil_list_to_tensor(images):
            bg_c = [1.0, 1.0, 1.0]
            images_tensor = []
            for batch_imgs in images:
                view_imgs = []
                for pil_img in batch_imgs:
                    img = numpy.asarray(pil_img, dtype=numpy.float32) / 255.0
                    if img.shape[2] > 3:
                        alpha = img[:, :, 3:]
                        img = img[:, :, :3] * alpha + bg_c * (1 - alpha)
                    img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0).contiguous().half().to("cuda")
                    view_imgs.append(img)
                view_imgs = torch.cat(view_imgs, dim=0)
                images_tensor.append(view_imgs.unsqueeze(0))

            images_tensor = torch.cat(images_tensor, dim=0)
            return images_tensor

        if "images_normal" in cached_condition:
            if isinstance(cached_condition["images_normal"], List):
                cached_condition["images_normal"] = convert_pil_list_to_tensor(cached_condition["images_normal"])

            cached_condition["embeds_normal"] = self.encode_images(cached_condition["images_normal"])

        if "images_position" in cached_condition:

            if isinstance(cached_condition["images_position"], List):
                cached_condition["images_position"] = convert_pil_list_to_tensor(cached_condition["images_position"])

            cached_condition["position_maps"] = cached_condition["images_position"]
            cached_condition["embeds_position"] = self.encode_images(cached_condition["images_position"])

        if self.unet.use_learned_text_clip:

            all_shading_tokens = []
            for token in self.unet.pbr_setting:
                all_shading_tokens.append(
                    getattr(self.unet, f"learned_text_clip_{token}").unsqueeze(dim=0).repeat(batch_size, 1, 1)
                )
            prompt_embeds = torch.stack(all_shading_tokens, dim=1)
            negative_prompt_embeds = torch.stack(all_shading_tokens, dim=1)
            # negative_prompt_embeds = torch.zeros_like(prompt_embeds)

        else:
            if prompt is None:
                prompt = "high quality"
            if isinstance(prompt, str):
                prompt = [prompt for _ in range(batch_size)]
            device = self._execution_device
            prompt_embeds, _ = self.encode_prompt(
                prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False
            )

            if isinstance(negative_prompt, str):
                negative_prompt = [negative_prompt for _ in range(batch_size)]
            if negative_prompt is not None:
                negative_prompt_embeds, _ = self.encode_prompt(
                    negative_prompt,
                    device=device,
                    num_images_per_prompt=num_images_per_prompt,
                    do_classifier_free_guidance=False,
                )
            else:
                negative_prompt_embeds = torch.zeros_like(prompt_embeds)

        if guidance_scale > 1:
            if self.unet.use_ra:
                cached_condition["ref_latents"] = cached_condition["ref_latents"].repeat(
                    3, *([1] * (cached_condition["ref_latents"].dim() - 1))
                )
                cached_condition["ref_scale"] = torch.as_tensor([0.0, 1.0, 1.0]).to(cached_condition["ref_latents"])

            if self.unet.use_dino:
                zero_states = torch.zeros_like(cached_condition["dino_hidden_states"])
                cached_condition["dino_hidden_states"] = torch.cat(
                    [zero_states, zero_states, cached_condition["dino_hidden_states"]]
                )

                del zero_states
            if "embeds_normal" in cached_condition:
                cached_condition["embeds_normal"] = cached_condition["embeds_normal"].repeat(
                    3, *([1] * (cached_condition["embeds_normal"].dim() - 1))
                )

            if "embeds_position" in cached_condition:
                cached_condition["embeds_position"] = cached_condition["embeds_position"].repeat(
                    3, *([1] * (cached_condition["embeds_position"].dim() - 1))
                )

            if "position_maps" in cached_condition:
                cached_condition["position_maps"] = cached_condition["position_maps"].repeat(
                    3, *([1] * (cached_condition["position_maps"].dim() - 1))
                )

        images = self.denoise(
            None,
            *args,
            cross_attention_kwargs=None,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            num_inference_steps=num_inference_steps,
            output_type=output_type,
            width=width,
            height=height,
            return_dict=return_dict,
            **cached_condition,
        )

        return images

    def denoise(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        sigmas: List[float] = None,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            timesteps (`List[int]`, *optional*):
                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
                passed will be used. Must be in descending order.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
                provided, embeddings are computed from the `ip_adapter_image` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`]
                (https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
                
        Core denoising procedure for multiview PBR texture generation.
        
        Handles the complete diffusion process including:
        - Input validation and preparation
        - Timestep scheduling
        - Latent noise initialization
        - Iterative denoising with specialized guidance
        - Output decoding and post-processing
        
        Key innovations:
        1. Triple-batch classifier-free guidance:
           - Negative (unconditional)
           - Reference-conditioned
           - Full-conditioned
        2. View-dependent guidance scaling:
           - Adjusts influence based on camera azimuth
        3. PBR-aware latent organization:
           - Maintains material/view separation throughout
        4. Optimized VRAM management:
           - Selective tensor reshaping
        
        Processing Stages:
        1. Setup & Validation: Configures pipeline components and validates inputs
        2. Prompt Encoding: Processes text/material conditioning
        3. Latent Initialization: Prepares noise for denoising process
        4. Iterative Denoising: 
            a) Scales and organizes latent variables
            b) Predicts noise at current timestep
            c) Applies view-dependent guidance
            d) Computes previous latent state
        5. Output Decoding: Converts latents to final images
        6. Cleanup: Releases resources and formats output
        
        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        # open cache
        kwargs["cache"] = {}

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated,"
                "consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated,"
                "consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
        # to deal with lora scaling and other possible forward hooks

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None

        """
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )'
        """

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            # prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )
        assert num_images_per_prompt == 1
        # 5. Prepare latent variables
        n_pbr = len(self.unet.pbr_setting)
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * kwargs["num_in_batch"] * n_pbr,  # num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )

        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latents = rearrange(
                    latents, "(b n_pbr n) c h w -> b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr
                )
                # latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents
                latent_model_input = latents.repeat(3, 1, 1, 1, 1, 1) if self.do_classifier_free_guidance else latents
                latent_model_input = rearrange(latent_model_input, "b n_pbr n c h w -> (b n_pbr n) c h w")
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                latent_model_input = rearrange(
                    latent_model_input, "(b n_pbr n) c h w ->b n_pbr n c h w", n=kwargs["num_in_batch"], n_pbr=n_pbr
                )

                # predict the noise residual

                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                    **kwargs,
                )[0]
                latents = rearrange(latents, "b n_pbr n c h w -> (b n_pbr n) c h w")
                # perform guidance
                if self.do_classifier_free_guidance:
                    # noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    # noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
                    noise_pred_uncond, noise_pred_ref, noise_pred_full = noise_pred.chunk(3)

                    if "camera_azims" in kwargs.keys():
                        camera_azims = kwargs["camera_azims"]
                    else:
                        camera_azims = [0] * kwargs["num_in_batch"]

                    def cam_mapping(azim):
                        if azim < 90 and azim >= 0:
                            return float(azim) / 90.0 + 1
                        elif azim >= 90 and azim < 330:
                            return 2.0
                        else:
                            return -float(azim) / 90.0 + 5.0

                    view_scale_tensor = (
                        torch.from_numpy(np.asarray([cam_mapping(azim) for azim in camera_azims]))
                        .unsqueeze(0)
                        .repeat(n_pbr, 1)
                        .view(-1)
                        .to(noise_pred_uncond)[:, None, None, None]
                    )
                    noise_pred = noise_pred_uncond + self.guidance_scale * view_scale_tensor * (
                        noise_pred_ref - noise_pred_uncond
                    )
                    noise_pred += self.guidance_scale * view_scale_tensor * (noise_pred_full - noise_pred_ref)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_ref, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents[:, :num_channels_latents, :, :], **extra_step_kwargs, return_dict=False
                )[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)