File size: 2,971 Bytes
cd6f25f
 
 
 
d2c787a
cd6f25f
d2c787a
 
cd6f25f
 
 
 
 
d2c787a
 
 
 
 
 
 
 
 
cd6f25f
 
d2c787a
cd6f25f
 
 
 
 
 
 
 
 
 
 
 
0d012be
cd6f25f
 
 
 
 
 
 
 
5ecc655
7993b36
5ecc655
d2c787a
5ecc655
da413e9
bc2d7bb
5ecc655
 
d14052c
 
bc2d7bb
 
5ecc655
 
d14052c
 
cd6f25f
 
 
d2c787a
cd6f25f
 
 
 
b9b9bc5
cd6f25f
 
 
 
 
 
d2c787a
 
cd6f25f
d2c787a
cd6f25f
f9eccf3
cd6f25f
 
d2c787a
 
 
cd6f25f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import json
from datetime import datetime

import gradio as gr
from openai import OpenAI


def print_now(msg):
    now = datetime.now()
    formatted_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
    print(f"{msg}:{formatted_time}")
    return formatted_time

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    try:
        default_system ="You are Tencent's helpful AI assistant Hunyuan."

        messages = [{"Role": "system", "Content": default_system}]
        client = OpenAI(
            api_key=os.getenv('HUNYUAN_API_KEY'),
            base_url="https://api.hunyuan.cloud.tencent.com/v1",
        )
        for val in history:
            if val[0] and val[1]:
                messages.append({"Role": "user", "Content": val[0]})
                messages.append({"Role": "assistant", "Content": val[1]})
        
        messages.append({"Role": "user", "Content": message})
        completion = client.chat.completions.create(
            model="hunyuan-t1-latest",
            messages=messages,
            stream=True,
            extra_body={
            "stream_moderation": True,
            "enable_enhancement": False,
            }
        )
        response = ""
        is_reasoning_start = True
        is_reasoning_end = True
        

        for event in completion:
            if hasattr(event.choices[0].delta, 'reasoning_content'):
                if is_reasoning_start:
                    response += '> **开始思考**\n\n'
                    is_reasoning_start = False
                token = event.choices[0].delta.reasoning_content# Wrap reasoning_content in a span with a lighter color
                response += f'<span style="color: #999999;">{token}</span>'
            else:
                if is_reasoning_end:
                    response += '> **η»“ζŸζ€θ€ƒ**\n\n'
                    is_reasoning_end = False
                token = event.choices[0].delta.content# Wrap content in a span with a normal color
                response += f'<span style="color: #000000;">{token}</span>'
            yield response
    except Exception as e:
        raise gr.Error(f"ε‘η”Ÿι”™θ――: {str(e)}")

example_prompts = [
    ["How to cook Kung Pao chicken the tastiest?"],
    ["Help me create an email expressing my greetings to an old friend."],
    ["ε†™δΈ€η―‡ε…³δΊŽι’ζ˜₯ηš„δΊ”θ¨€η»ε₯"],
    ["ι†‹ι…ΈδΉ™ι…―θƒ½δΈŽζ°΄ζ··εˆε—"]
]
latex_delimiters = [
    {"left": "$$", "right": "$$", "display": True},
    {"left": "\\[", "right": "\\]", "display": True},{"left": "$", "right": "$", "display": False},
    {"left": "\\(", "right": "\\)", "display": False}
]


chatbot = gr.Chatbot(latex_delimiters=latex_delimiters, scale=9)

demo = gr.ChatInterface(respond,
    title="Hunyuan T1",
    examples=example_prompts,
    chatbot=chatbot
)

if __name__ == "__main__":
    demo.queue(default_concurrency_limit=40)
    demo.launch(max_threads=40)