from typing import Union, List import tempfile import numpy as np import PIL.Image import matplotlib.cm as cm import mediapy import torch def save_video( video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10, crf: int = 18, ) -> str: if output_video_path is None: output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name if isinstance(video_frames[0], np.ndarray): video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames] elif isinstance(video_frames[0], PIL.Image.Image): video_frames = [np.array(frame) for frame in video_frames] mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf) return output_video_path class ColorMapper: # a color mapper to map depth values to a certain colormap def __init__(self, colormap: str = "inferno"): self.colormap = torch.tensor(cm.get_cmap(colormap).colors) def apply(self, image: torch.Tensor, v_min=None, v_max=None): # assert len(image.shape) == 2 if v_min is None: v_min = image.min() if v_max is None: v_max = image.max() image = (image - v_min) / (v_max - v_min) image = (image * 255).long() image = self.colormap[image] return image def vis_sequence_depth(depths: np.ndarray, v_min=None, v_max=None): visualizer = ColorMapper() if v_min is None: v_min = depths.min() if v_max is None: v_max = depths.max() res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy() return res