X-GAO commited on
Commit
fdc0182
·
unverified ·
1 Parent(s): cc2de22

Delete benchmark directory

Browse files
benchmark/__init__.py DELETED
File without changes
benchmark/csv/meta_bonn.csv DELETED
@@ -1,6 +0,0 @@
1
- filepath_left,filepath_disparity
2
- bonn/rgbd_bonn_synchronous_rgb_left.mp4,bonn/rgbd_bonn_synchronous_disparity.npz
3
- bonn/rgbd_bonn_person_tracking_rgb_left.mp4,bonn/rgbd_bonn_person_tracking_disparity.npz
4
- bonn/rgbd_bonn_crowd2_rgb_left.mp4,bonn/rgbd_bonn_crowd2_disparity.npz
5
- bonn/rgbd_bonn_crowd3_rgb_left.mp4,bonn/rgbd_bonn_crowd3_disparity.npz
6
- bonn/rgbd_bonn_balloon2_rgb_left.mp4,bonn/rgbd_bonn_balloon2_disparity.npz
 
 
 
 
 
 
 
benchmark/csv/meta_kitti_val.csv DELETED
@@ -1,14 +0,0 @@
1
- filepath_left,filepath_disparity
2
- KITTI/2011_09_28_drive_0037_sync_rgb_left.mp4,KITTI/2011_09_28_drive_0037_sync_disparity.npz
3
- KITTI/2011_09_26_drive_0005_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0005_sync_disparity.npz
4
- KITTI/2011_09_30_drive_0016_sync_rgb_left.mp4,KITTI/2011_09_30_drive_0016_sync_disparity.npz
5
- KITTI/2011_09_26_drive_0079_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0079_sync_disparity.npz
6
- KITTI/2011_09_26_drive_0020_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0020_sync_disparity.npz
7
- KITTI/2011_09_26_drive_0095_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0095_sync_disparity.npz
8
- KITTI/2011_10_03_drive_0047_sync_rgb_left.mp4,KITTI/2011_10_03_drive_0047_sync_disparity.npz
9
- KITTI/2011_09_26_drive_0113_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0113_sync_disparity.npz
10
- KITTI/2011_09_26_drive_0036_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0036_sync_disparity.npz
11
- KITTI/2011_09_26_drive_0013_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0013_sync_disparity.npz
12
- KITTI/2011_09_26_drive_0002_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0002_sync_disparity.npz
13
- KITTI/2011_09_29_drive_0026_sync_rgb_left.mp4,KITTI/2011_09_29_drive_0026_sync_disparity.npz
14
- KITTI/2011_09_26_drive_0023_sync_rgb_left.mp4,KITTI/2011_09_26_drive_0023_sync_disparity.npz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/csv/meta_nyu_test.csv DELETED
@@ -1,655 +0,0 @@
1
- filepath_left,filepath_disparity
2
- NYUv2/test/kitchen_0004/rgb_0001_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0001_disparity.npz
3
- NYUv2/test/kitchen_0004/rgb_0002_rgb_left.mp4,NYUv2/test/kitchen_0004/rgb_0002_disparity.npz
4
- NYUv2/test/office_0005/rgb_0009_rgb_left.mp4,NYUv2/test/office_0005/rgb_0009_disparity.npz
5
- NYUv2/test/office_0007/rgb_0014_rgb_left.mp4,NYUv2/test/office_0007/rgb_0014_disparity.npz
6
- NYUv2/test/office_0008/rgb_0015_rgb_left.mp4,NYUv2/test/office_0008/rgb_0015_disparity.npz
7
- NYUv2/test/office_0008/rgb_0016_rgb_left.mp4,NYUv2/test/office_0008/rgb_0016_disparity.npz
8
- NYUv2/test/office_0008/rgb_0017_rgb_left.mp4,NYUv2/test/office_0008/rgb_0017_disparity.npz
9
- NYUv2/test/office_0008/rgb_0018_rgb_left.mp4,NYUv2/test/office_0008/rgb_0018_disparity.npz
10
- NYUv2/test/office_0010/rgb_0021_rgb_left.mp4,NYUv2/test/office_0010/rgb_0021_disparity.npz
11
- NYUv2/test/office_0013/rgb_0028_rgb_left.mp4,NYUv2/test/office_0013/rgb_0028_disparity.npz
12
- NYUv2/test/office_0013/rgb_0029_rgb_left.mp4,NYUv2/test/office_0013/rgb_0029_disparity.npz
13
- NYUv2/test/office_0013/rgb_0030_rgb_left.mp4,NYUv2/test/office_0013/rgb_0030_disparity.npz
14
- NYUv2/test/office_0013/rgb_0031_rgb_left.mp4,NYUv2/test/office_0013/rgb_0031_disparity.npz
15
- NYUv2/test/office_0013/rgb_0032_rgb_left.mp4,NYUv2/test/office_0013/rgb_0032_disparity.npz
16
- NYUv2/test/office_0013/rgb_0033_rgb_left.mp4,NYUv2/test/office_0013/rgb_0033_disparity.npz
17
- NYUv2/test/office_0013/rgb_0034_rgb_left.mp4,NYUv2/test/office_0013/rgb_0034_disparity.npz
18
- NYUv2/test/office_0014/rgb_0035_rgb_left.mp4,NYUv2/test/office_0014/rgb_0035_disparity.npz
19
- NYUv2/test/office_0014/rgb_0036_rgb_left.mp4,NYUv2/test/office_0014/rgb_0036_disparity.npz
20
- NYUv2/test/office_0014/rgb_0037_rgb_left.mp4,NYUv2/test/office_0014/rgb_0037_disparity.npz
21
- NYUv2/test/office_0014/rgb_0038_rgb_left.mp4,NYUv2/test/office_0014/rgb_0038_disparity.npz
22
- NYUv2/test/office_0015/rgb_0039_rgb_left.mp4,NYUv2/test/office_0015/rgb_0039_disparity.npz
23
- NYUv2/test/office_0015/rgb_0040_rgb_left.mp4,NYUv2/test/office_0015/rgb_0040_disparity.npz
24
- NYUv2/test/office_0015/rgb_0041_rgb_left.mp4,NYUv2/test/office_0015/rgb_0041_disparity.npz
25
- NYUv2/test/office_0015/rgb_0042_rgb_left.mp4,NYUv2/test/office_0015/rgb_0042_disparity.npz
26
- NYUv2/test/office_0015/rgb_0043_rgb_left.mp4,NYUv2/test/office_0015/rgb_0043_disparity.npz
27
- NYUv2/test/bathroom_0003/rgb_0046_rgb_left.mp4,NYUv2/test/bathroom_0003/rgb_0046_disparity.npz
28
- NYUv2/test/bathroom_0004/rgb_0047_rgb_left.mp4,NYUv2/test/bathroom_0004/rgb_0047_disparity.npz
29
- NYUv2/test/bedroom_0011/rgb_0056_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0056_disparity.npz
30
- NYUv2/test/bedroom_0011/rgb_0057_rgb_left.mp4,NYUv2/test/bedroom_0011/rgb_0057_disparity.npz
31
- NYUv2/test/bedroom_0013/rgb_0059_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0059_disparity.npz
32
- NYUv2/test/bedroom_0013/rgb_0060_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0060_disparity.npz
33
- NYUv2/test/bedroom_0013/rgb_0061_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0061_disparity.npz
34
- NYUv2/test/bedroom_0013/rgb_0062_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0062_disparity.npz
35
- NYUv2/test/bedroom_0013/rgb_0063_rgb_left.mp4,NYUv2/test/bedroom_0013/rgb_0063_disparity.npz
36
- NYUv2/test/bedroom_0018/rgb_0076_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0076_disparity.npz
37
- NYUv2/test/bedroom_0018/rgb_0077_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0077_disparity.npz
38
- NYUv2/test/bedroom_0018/rgb_0078_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0078_disparity.npz
39
- NYUv2/test/bedroom_0018/rgb_0079_rgb_left.mp4,NYUv2/test/bedroom_0018/rgb_0079_disparity.npz
40
- NYUv2/test/bookstore_0001/rgb_0084_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0084_disparity.npz
41
- NYUv2/test/bookstore_0001/rgb_0085_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0085_disparity.npz
42
- NYUv2/test/bookstore_0001/rgb_0086_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0086_disparity.npz
43
- NYUv2/test/bookstore_0001/rgb_0087_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0087_disparity.npz
44
- NYUv2/test/bookstore_0001/rgb_0088_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0088_disparity.npz
45
- NYUv2/test/bookstore_0001/rgb_0089_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0089_disparity.npz
46
- NYUv2/test/bookstore_0001/rgb_0090_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0090_disparity.npz
47
- NYUv2/test/bookstore_0001/rgb_0091_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0091_disparity.npz
48
- NYUv2/test/bookstore_0001/rgb_0117_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0117_disparity.npz
49
- NYUv2/test/bookstore_0001/rgb_0118_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0118_disparity.npz
50
- NYUv2/test/bookstore_0001/rgb_0119_rgb_left.mp4,NYUv2/test/bookstore_0001/rgb_0119_disparity.npz
51
- NYUv2/test/kitchen_0005/rgb_0125_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0125_disparity.npz
52
- NYUv2/test/kitchen_0005/rgb_0126_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0126_disparity.npz
53
- NYUv2/test/kitchen_0005/rgb_0127_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0127_disparity.npz
54
- NYUv2/test/kitchen_0005/rgb_0128_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0128_disparity.npz
55
- NYUv2/test/kitchen_0005/rgb_0129_rgb_left.mp4,NYUv2/test/kitchen_0005/rgb_0129_disparity.npz
56
- NYUv2/test/kitchen_0007/rgb_0131_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0131_disparity.npz
57
- NYUv2/test/kitchen_0007/rgb_0132_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0132_disparity.npz
58
- NYUv2/test/kitchen_0007/rgb_0133_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0133_disparity.npz
59
- NYUv2/test/kitchen_0007/rgb_0134_rgb_left.mp4,NYUv2/test/kitchen_0007/rgb_0134_disparity.npz
60
- NYUv2/test/kitchen_0009/rgb_0137_rgb_left.mp4,NYUv2/test/kitchen_0009/rgb_0137_disparity.npz
61
- NYUv2/test/living_room_0008/rgb_0153_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0153_disparity.npz
62
- NYUv2/test/living_room_0008/rgb_0154_rgb_left.mp4,NYUv2/test/living_room_0008/rgb_0154_disparity.npz
63
- NYUv2/test/living_room_0009/rgb_0155_rgb_left.mp4,NYUv2/test/living_room_0009/rgb_0155_disparity.npz
64
- NYUv2/test/living_room_0013/rgb_0167_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0167_disparity.npz
65
- NYUv2/test/living_room_0013/rgb_0168_rgb_left.mp4,NYUv2/test/living_room_0013/rgb_0168_disparity.npz
66
- NYUv2/test/living_room_0014/rgb_0169_rgb_left.mp4,NYUv2/test/living_room_0014/rgb_0169_disparity.npz
67
- NYUv2/test/bedroom_0003/rgb_0171_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0171_disparity.npz
68
- NYUv2/test/bedroom_0003/rgb_0172_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0172_disparity.npz
69
- NYUv2/test/bedroom_0003/rgb_0173_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0173_disparity.npz
70
- NYUv2/test/bedroom_0003/rgb_0174_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0174_disparity.npz
71
- NYUv2/test/bedroom_0003/rgb_0175_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0175_disparity.npz
72
- NYUv2/test/bedroom_0003/rgb_0176_rgb_left.mp4,NYUv2/test/bedroom_0003/rgb_0176_disparity.npz
73
- NYUv2/test/bedroom_0005/rgb_0180_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0180_disparity.npz
74
- NYUv2/test/bedroom_0005/rgb_0181_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0181_disparity.npz
75
- NYUv2/test/bedroom_0005/rgb_0182_rgb_left.mp4,NYUv2/test/bedroom_0005/rgb_0182_disparity.npz
76
- NYUv2/test/bedroom_0006/rgb_0183_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0183_disparity.npz
77
- NYUv2/test/bedroom_0006/rgb_0184_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0184_disparity.npz
78
- NYUv2/test/bedroom_0006/rgb_0185_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0185_disparity.npz
79
- NYUv2/test/bedroom_0006/rgb_0186_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0186_disparity.npz
80
- NYUv2/test/bedroom_0006/rgb_0187_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0187_disparity.npz
81
- NYUv2/test/bedroom_0006/rgb_0188_rgb_left.mp4,NYUv2/test/bedroom_0006/rgb_0188_disparity.npz
82
- NYUv2/test/bedroom_0007/rgb_0189_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0189_disparity.npz
83
- NYUv2/test/bedroom_0007/rgb_0190_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0190_disparity.npz
84
- NYUv2/test/bedroom_0007/rgb_0191_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0191_disparity.npz
85
- NYUv2/test/bedroom_0007/rgb_0192_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0192_disparity.npz
86
- NYUv2/test/bedroom_0007/rgb_0193_rgb_left.mp4,NYUv2/test/bedroom_0007/rgb_0193_disparity.npz
87
- NYUv2/test/kitchen_0002/rgb_0194_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0194_disparity.npz
88
- NYUv2/test/kitchen_0002/rgb_0195_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0195_disparity.npz
89
- NYUv2/test/kitchen_0002/rgb_0196_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0196_disparity.npz
90
- NYUv2/test/kitchen_0002/rgb_0197_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0197_disparity.npz
91
- NYUv2/test/kitchen_0002/rgb_0198_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0198_disparity.npz
92
- NYUv2/test/kitchen_0002/rgb_0199_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0199_disparity.npz
93
- NYUv2/test/kitchen_0002/rgb_0200_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0200_disparity.npz
94
- NYUv2/test/kitchen_0002/rgb_0201_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0201_disparity.npz
95
- NYUv2/test/kitchen_0002/rgb_0202_rgb_left.mp4,NYUv2/test/kitchen_0002/rgb_0202_disparity.npz
96
- NYUv2/test/living_room_0002/rgb_0207_rgb_left.mp4,NYUv2/test/living_room_0002/rgb_0207_disparity.npz
97
- NYUv2/test/living_room_0003/rgb_0208_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0208_disparity.npz
98
- NYUv2/test/living_room_0003/rgb_0209_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0209_disparity.npz
99
- NYUv2/test/living_room_0003/rgb_0210_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0210_disparity.npz
100
- NYUv2/test/living_room_0003/rgb_0211_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0211_disparity.npz
101
- NYUv2/test/living_room_0003/rgb_0212_rgb_left.mp4,NYUv2/test/living_room_0003/rgb_0212_disparity.npz
102
- NYUv2/test/bedroom_0022/rgb_0220_rgb_left.mp4,NYUv2/test/bedroom_0022/rgb_0220_disparity.npz
103
- NYUv2/test/bedroom_0024/rgb_0221_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0221_disparity.npz
104
- NYUv2/test/bedroom_0024/rgb_0222_rgb_left.mp4,NYUv2/test/bedroom_0024/rgb_0222_disparity.npz
105
- NYUv2/test/kitchen_0015/rgb_0250_rgb_left.mp4,NYUv2/test/kitchen_0015/rgb_0250_disparity.npz
106
- NYUv2/test/living_room_0021/rgb_0264_rgb_left.mp4,NYUv2/test/living_room_0021/rgb_0264_disparity.npz
107
- NYUv2/test/office_0016/rgb_0271_rgb_left.mp4,NYUv2/test/office_0016/rgb_0271_disparity.npz
108
- NYUv2/test/office_0017/rgb_0272_rgb_left.mp4,NYUv2/test/office_0017/rgb_0272_disparity.npz
109
- NYUv2/test/study_room_0001/rgb_0273_rgb_left.mp4,NYUv2/test/study_room_0001/rgb_0273_disparity.npz
110
- NYUv2/test/study_room_0006/rgb_0279_rgb_left.mp4,NYUv2/test/study_room_0006/rgb_0279_disparity.npz
111
- NYUv2/test/bedroom_0131/rgb_0280_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0280_disparity.npz
112
- NYUv2/test/bedroom_0131/rgb_0281_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0281_disparity.npz
113
- NYUv2/test/bedroom_0131/rgb_0282_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0282_disparity.npz
114
- NYUv2/test/bedroom_0131/rgb_0283_rgb_left.mp4,NYUv2/test/bedroom_0131/rgb_0283_disparity.npz
115
- NYUv2/test/classroom_0001/rgb_0284_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0284_disparity.npz
116
- NYUv2/test/classroom_0001/rgb_0285_rgb_left.mp4,NYUv2/test/classroom_0001/rgb_0285_disparity.npz
117
- NYUv2/test/classroom_0007/rgb_0296_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0296_disparity.npz
118
- NYUv2/test/classroom_0007/rgb_0297_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0297_disparity.npz
119
- NYUv2/test/classroom_0007/rgb_0298_rgb_left.mp4,NYUv2/test/classroom_0007/rgb_0298_disparity.npz
120
- NYUv2/test/classroom_0008/rgb_0299_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0299_disparity.npz
121
- NYUv2/test/classroom_0008/rgb_0300_rgb_left.mp4,NYUv2/test/classroom_0008/rgb_0300_disparity.npz
122
- NYUv2/test/classroom_0009/rgb_0301_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0301_disparity.npz
123
- NYUv2/test/classroom_0009/rgb_0302_rgb_left.mp4,NYUv2/test/classroom_0009/rgb_0302_disparity.npz
124
- NYUv2/test/classroom_0014/rgb_0310_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0310_disparity.npz
125
- NYUv2/test/classroom_0014/rgb_0311_rgb_left.mp4,NYUv2/test/classroom_0014/rgb_0311_disparity.npz
126
- NYUv2/test/classroom_0015/rgb_0312_rgb_left.mp4,NYUv2/test/classroom_0015/rgb_0312_disparity.npz
127
- NYUv2/test/classroom_0017/rgb_0315_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0315_disparity.npz
128
- NYUv2/test/classroom_0017/rgb_0316_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0316_disparity.npz
129
- NYUv2/test/classroom_0017/rgb_0317_rgb_left.mp4,NYUv2/test/classroom_0017/rgb_0317_disparity.npz
130
- NYUv2/test/classroom_0023/rgb_0325_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0325_disparity.npz
131
- NYUv2/test/classroom_0023/rgb_0326_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0326_disparity.npz
132
- NYUv2/test/classroom_0023/rgb_0327_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0327_disparity.npz
133
- NYUv2/test/classroom_0023/rgb_0328_rgb_left.mp4,NYUv2/test/classroom_0023/rgb_0328_disparity.npz
134
- NYUv2/test/classroom_0024/rgb_0329_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0329_disparity.npz
135
- NYUv2/test/classroom_0024/rgb_0330_rgb_left.mp4,NYUv2/test/classroom_0024/rgb_0330_disparity.npz
136
- NYUv2/test/classroom_0026/rgb_0331_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0331_disparity.npz
137
- NYUv2/test/classroom_0026/rgb_0332_rgb_left.mp4,NYUv2/test/classroom_0026/rgb_0332_disparity.npz
138
- NYUv2/test/computer_lab_0001/rgb_0333_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0333_disparity.npz
139
- NYUv2/test/computer_lab_0001/rgb_0334_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0334_disparity.npz
140
- NYUv2/test/computer_lab_0001/rgb_0335_rgb_left.mp4,NYUv2/test/computer_lab_0001/rgb_0335_disparity.npz
141
- NYUv2/test/foyer_0001/rgb_0351_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0351_disparity.npz
142
- NYUv2/test/foyer_0001/rgb_0352_rgb_left.mp4,NYUv2/test/foyer_0001/rgb_0352_disparity.npz
143
- NYUv2/test/home_office_0001/rgb_0355_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0355_disparity.npz
144
- NYUv2/test/home_office_0001/rgb_0356_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0356_disparity.npz
145
- NYUv2/test/home_office_0001/rgb_0357_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0357_disparity.npz
146
- NYUv2/test/home_office_0001/rgb_0358_rgb_left.mp4,NYUv2/test/home_office_0001/rgb_0358_disparity.npz
147
- NYUv2/test/home_office_0002/rgb_0359_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0359_disparity.npz
148
- NYUv2/test/home_office_0002/rgb_0360_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0360_disparity.npz
149
- NYUv2/test/home_office_0002/rgb_0361_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0361_disparity.npz
150
- NYUv2/test/home_office_0002/rgb_0362_rgb_left.mp4,NYUv2/test/home_office_0002/rgb_0362_disparity.npz
151
- NYUv2/test/home_office_0003/rgb_0363_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0363_disparity.npz
152
- NYUv2/test/home_office_0003/rgb_0364_rgb_left.mp4,NYUv2/test/home_office_0003/rgb_0364_disparity.npz
153
- NYUv2/test/home_office_0009/rgb_0384_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0384_disparity.npz
154
- NYUv2/test/home_office_0009/rgb_0385_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0385_disparity.npz
155
- NYUv2/test/home_office_0009/rgb_0386_rgb_left.mp4,NYUv2/test/home_office_0009/rgb_0386_disparity.npz
156
- NYUv2/test/home_office_0010/rgb_0387_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0387_disparity.npz
157
- NYUv2/test/home_office_0010/rgb_0388_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0388_disparity.npz
158
- NYUv2/test/home_office_0010/rgb_0389_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0389_disparity.npz
159
- NYUv2/test/home_office_0010/rgb_0390_rgb_left.mp4,NYUv2/test/home_office_0010/rgb_0390_disparity.npz
160
- NYUv2/test/home_office_0012/rgb_0395_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0395_disparity.npz
161
- NYUv2/test/home_office_0012/rgb_0396_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0396_disparity.npz
162
- NYUv2/test/home_office_0012/rgb_0397_rgb_left.mp4,NYUv2/test/home_office_0012/rgb_0397_disparity.npz
163
- NYUv2/test/office_kitchen_0002/rgb_0411_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0411_disparity.npz
164
- NYUv2/test/office_kitchen_0002/rgb_0412_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0412_disparity.npz
165
- NYUv2/test/office_kitchen_0002/rgb_0413_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0413_disparity.npz
166
- NYUv2/test/office_kitchen_0002/rgb_0414_rgb_left.mp4,NYUv2/test/office_kitchen_0002/rgb_0414_disparity.npz
167
- NYUv2/test/playroom_0005/rgb_0430_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0430_disparity.npz
168
- NYUv2/test/playroom_0005/rgb_0431_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0431_disparity.npz
169
- NYUv2/test/playroom_0005/rgb_0432_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0432_disparity.npz
170
- NYUv2/test/playroom_0005/rgb_0433_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0433_disparity.npz
171
- NYUv2/test/playroom_0005/rgb_0434_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0434_disparity.npz
172
- NYUv2/test/playroom_0005/rgb_0435_rgb_left.mp4,NYUv2/test/playroom_0005/rgb_0435_disparity.npz
173
- NYUv2/test/playroom_0007/rgb_0441_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0441_disparity.npz
174
- NYUv2/test/playroom_0007/rgb_0442_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0442_disparity.npz
175
- NYUv2/test/playroom_0007/rgb_0443_rgb_left.mp4,NYUv2/test/playroom_0007/rgb_0443_disparity.npz
176
- NYUv2/test/playroom_0008/rgb_0444_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0444_disparity.npz
177
- NYUv2/test/playroom_0008/rgb_0445_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0445_disparity.npz
178
- NYUv2/test/playroom_0008/rgb_0446_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0446_disparity.npz
179
- NYUv2/test/playroom_0008/rgb_0447_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0447_disparity.npz
180
- NYUv2/test/playroom_0008/rgb_0448_rgb_left.mp4,NYUv2/test/playroom_0008/rgb_0448_disparity.npz
181
- NYUv2/test/reception_room_0003/rgb_0462_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0462_disparity.npz
182
- NYUv2/test/reception_room_0003/rgb_0463_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0463_disparity.npz
183
- NYUv2/test/reception_room_0003/rgb_0464_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0464_disparity.npz
184
- NYUv2/test/reception_room_0003/rgb_0465_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0465_disparity.npz
185
- NYUv2/test/reception_room_0003/rgb_0466_rgb_left.mp4,NYUv2/test/reception_room_0003/rgb_0466_disparity.npz
186
- NYUv2/test/study_0001/rgb_0469_rgb_left.mp4,NYUv2/test/study_0001/rgb_0469_disparity.npz
187
- NYUv2/test/study_0001/rgb_0470_rgb_left.mp4,NYUv2/test/study_0001/rgb_0470_disparity.npz
188
- NYUv2/test/study_0001/rgb_0471_rgb_left.mp4,NYUv2/test/study_0001/rgb_0471_disparity.npz
189
- NYUv2/test/study_0001/rgb_0472_rgb_left.mp4,NYUv2/test/study_0001/rgb_0472_disparity.npz
190
- NYUv2/test/study_0001/rgb_0473_rgb_left.mp4,NYUv2/test/study_0001/rgb_0473_disparity.npz
191
- NYUv2/test/study_0002/rgb_0474_rgb_left.mp4,NYUv2/test/study_0002/rgb_0474_disparity.npz
192
- NYUv2/test/study_0002/rgb_0475_rgb_left.mp4,NYUv2/test/study_0002/rgb_0475_disparity.npz
193
- NYUv2/test/study_0002/rgb_0476_rgb_left.mp4,NYUv2/test/study_0002/rgb_0476_disparity.npz
194
- NYUv2/test/study_0002/rgb_0477_rgb_left.mp4,NYUv2/test/study_0002/rgb_0477_disparity.npz
195
- NYUv2/test/bathroom_0058/rgb_0508_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0508_disparity.npz
196
- NYUv2/test/bathroom_0058/rgb_0509_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0509_disparity.npz
197
- NYUv2/test/bathroom_0058/rgb_0510_rgb_left.mp4,NYUv2/test/bathroom_0058/rgb_0510_disparity.npz
198
- NYUv2/test/bathroom_0060/rgb_0511_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0511_disparity.npz
199
- NYUv2/test/bathroom_0060/rgb_0512_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0512_disparity.npz
200
- NYUv2/test/bathroom_0060/rgb_0513_rgb_left.mp4,NYUv2/test/bathroom_0060/rgb_0513_disparity.npz
201
- NYUv2/test/bedroom_0133/rgb_0515_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0515_disparity.npz
202
- NYUv2/test/bedroom_0133/rgb_0516_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0516_disparity.npz
203
- NYUv2/test/bedroom_0133/rgb_0517_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0517_disparity.npz
204
- NYUv2/test/bedroom_0133/rgb_0518_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0518_disparity.npz
205
- NYUv2/test/bedroom_0133/rgb_0519_rgb_left.mp4,NYUv2/test/bedroom_0133/rgb_0519_disparity.npz
206
- NYUv2/test/bedroom_0134/rgb_0520_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0520_disparity.npz
207
- NYUv2/test/bedroom_0134/rgb_0521_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0521_disparity.npz
208
- NYUv2/test/bedroom_0134/rgb_0522_rgb_left.mp4,NYUv2/test/bedroom_0134/rgb_0522_disparity.npz
209
- NYUv2/test/bedroom_0135/rgb_0523_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0523_disparity.npz
210
- NYUv2/test/bedroom_0135/rgb_0524_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0524_disparity.npz
211
- NYUv2/test/bedroom_0135/rgb_0525_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0525_disparity.npz
212
- NYUv2/test/bedroom_0135/rgb_0526_rgb_left.mp4,NYUv2/test/bedroom_0135/rgb_0526_disparity.npz
213
- NYUv2/test/bedroom_0137/rgb_0531_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0531_disparity.npz
214
- NYUv2/test/bedroom_0137/rgb_0532_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0532_disparity.npz
215
- NYUv2/test/bedroom_0137/rgb_0533_rgb_left.mp4,NYUv2/test/bedroom_0137/rgb_0533_disparity.npz
216
- NYUv2/test/bedroom_0139/rgb_0537_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0537_disparity.npz
217
- NYUv2/test/bedroom_0139/rgb_0538_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0538_disparity.npz
218
- NYUv2/test/bedroom_0139/rgb_0539_rgb_left.mp4,NYUv2/test/bedroom_0139/rgb_0539_disparity.npz
219
- NYUv2/test/dining_room_0038/rgb_0549_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0549_disparity.npz
220
- NYUv2/test/dining_room_0038/rgb_0550_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0550_disparity.npz
221
- NYUv2/test/dining_room_0038/rgb_0551_rgb_left.mp4,NYUv2/test/dining_room_0038/rgb_0551_disparity.npz
222
- NYUv2/test/home_office_0014/rgb_0555_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0555_disparity.npz
223
- NYUv2/test/home_office_0014/rgb_0556_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0556_disparity.npz
224
- NYUv2/test/home_office_0014/rgb_0557_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0557_disparity.npz
225
- NYUv2/test/home_office_0014/rgb_0558_rgb_left.mp4,NYUv2/test/home_office_0014/rgb_0558_disparity.npz
226
- NYUv2/test/kitchen_0055/rgb_0559_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0559_disparity.npz
227
- NYUv2/test/kitchen_0055/rgb_0560_rgb_left.mp4,NYUv2/test/kitchen_0055/rgb_0560_disparity.npz
228
- NYUv2/test/kitchen_0056/rgb_0561_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0561_disparity.npz
229
- NYUv2/test/kitchen_0056/rgb_0562_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0562_disparity.npz
230
- NYUv2/test/kitchen_0056/rgb_0563_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0563_disparity.npz
231
- NYUv2/test/kitchen_0056/rgb_0564_rgb_left.mp4,NYUv2/test/kitchen_0056/rgb_0564_disparity.npz
232
- NYUv2/test/kitchen_0057/rgb_0565_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0565_disparity.npz
233
- NYUv2/test/kitchen_0057/rgb_0566_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0566_disparity.npz
234
- NYUv2/test/kitchen_0057/rgb_0567_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0567_disparity.npz
235
- NYUv2/test/kitchen_0057/rgb_0568_rgb_left.mp4,NYUv2/test/kitchen_0057/rgb_0568_disparity.npz
236
- NYUv2/test/kitchen_0058/rgb_0569_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0569_disparity.npz
237
- NYUv2/test/kitchen_0058/rgb_0570_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0570_disparity.npz
238
- NYUv2/test/kitchen_0058/rgb_0571_rgb_left.mp4,NYUv2/test/kitchen_0058/rgb_0571_disparity.npz
239
- NYUv2/test/living_room_0081/rgb_0579_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0579_disparity.npz
240
- NYUv2/test/living_room_0081/rgb_0580_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0580_disparity.npz
241
- NYUv2/test/living_room_0081/rgb_0581_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0581_disparity.npz
242
- NYUv2/test/living_room_0081/rgb_0582_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0582_disparity.npz
243
- NYUv2/test/living_room_0081/rgb_0583_rgb_left.mp4,NYUv2/test/living_room_0081/rgb_0583_disparity.npz
244
- NYUv2/test/living_room_0084/rgb_0591_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0591_disparity.npz
245
- NYUv2/test/living_room_0084/rgb_0592_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0592_disparity.npz
246
- NYUv2/test/living_room_0084/rgb_0593_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0593_disparity.npz
247
- NYUv2/test/living_room_0084/rgb_0594_rgb_left.mp4,NYUv2/test/living_room_0084/rgb_0594_disparity.npz
248
- NYUv2/test/living_room_0087/rgb_0603_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0603_disparity.npz
249
- NYUv2/test/living_room_0087/rgb_0604_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0604_disparity.npz
250
- NYUv2/test/living_room_0087/rgb_0605_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0605_disparity.npz
251
- NYUv2/test/living_room_0087/rgb_0606_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0606_disparity.npz
252
- NYUv2/test/living_room_0087/rgb_0607_rgb_left.mp4,NYUv2/test/living_room_0087/rgb_0607_disparity.npz
253
- NYUv2/test/office_0020/rgb_0612_rgb_left.mp4,NYUv2/test/office_0020/rgb_0612_disparity.npz
254
- NYUv2/test/office_0020/rgb_0613_rgb_left.mp4,NYUv2/test/office_0020/rgb_0613_disparity.npz
255
- NYUv2/test/office_0022/rgb_0617_rgb_left.mp4,NYUv2/test/office_0022/rgb_0617_disparity.npz
256
- NYUv2/test/office_0022/rgb_0618_rgb_left.mp4,NYUv2/test/office_0022/rgb_0618_disparity.npz
257
- NYUv2/test/office_0022/rgb_0619_rgb_left.mp4,NYUv2/test/office_0022/rgb_0619_disparity.npz
258
- NYUv2/test/office_0022/rgb_0620_rgb_left.mp4,NYUv2/test/office_0022/rgb_0620_disparity.npz
259
- NYUv2/test/office_0022/rgb_0621_rgb_left.mp4,NYUv2/test/office_0022/rgb_0621_disparity.npz
260
- NYUv2/test/office_0027/rgb_0633_rgb_left.mp4,NYUv2/test/office_0027/rgb_0633_disparity.npz
261
- NYUv2/test/office_0027/rgb_0634_rgb_left.mp4,NYUv2/test/office_0027/rgb_0634_disparity.npz
262
- NYUv2/test/office_0027/rgb_0635_rgb_left.mp4,NYUv2/test/office_0027/rgb_0635_disparity.npz
263
- NYUv2/test/office_0027/rgb_0636_rgb_left.mp4,NYUv2/test/office_0027/rgb_0636_disparity.npz
264
- NYUv2/test/office_0027/rgb_0637_rgb_left.mp4,NYUv2/test/office_0027/rgb_0637_disparity.npz
265
- NYUv2/test/office_0027/rgb_0638_rgb_left.mp4,NYUv2/test/office_0027/rgb_0638_disparity.npz
266
- NYUv2/test/study_0007/rgb_0644_rgb_left.mp4,NYUv2/test/study_0007/rgb_0644_disparity.npz
267
- NYUv2/test/study_0007/rgb_0645_rgb_left.mp4,NYUv2/test/study_0007/rgb_0645_disparity.npz
268
- NYUv2/test/bathroom_0008/rgb_0650_rgb_left.mp4,NYUv2/test/bathroom_0008/rgb_0650_disparity.npz
269
- NYUv2/test/bathroom_0009/rgb_0651_rgb_left.mp4,NYUv2/test/bathroom_0009/rgb_0651_disparity.npz
270
- NYUv2/test/bathroom_0012/rgb_0656_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0656_disparity.npz
271
- NYUv2/test/bathroom_0012/rgb_0657_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0657_disparity.npz
272
- NYUv2/test/bathroom_0012/rgb_0658_rgb_left.mp4,NYUv2/test/bathroom_0012/rgb_0658_disparity.npz
273
- NYUv2/test/bathroom_0015/rgb_0663_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0663_disparity.npz
274
- NYUv2/test/bathroom_0015/rgb_0664_rgb_left.mp4,NYUv2/test/bathroom_0015/rgb_0664_disparity.npz
275
- NYUv2/test/bathroom_0017/rgb_0668_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0668_disparity.npz
276
- NYUv2/test/bathroom_0017/rgb_0669_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0669_disparity.npz
277
- NYUv2/test/bathroom_0017/rgb_0670_rgb_left.mp4,NYUv2/test/bathroom_0017/rgb_0670_disparity.npz
278
- NYUv2/test/bathroom_0018/rgb_0671_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0671_disparity.npz
279
- NYUv2/test/bathroom_0018/rgb_0672_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0672_disparity.npz
280
- NYUv2/test/bathroom_0018/rgb_0673_rgb_left.mp4,NYUv2/test/bathroom_0018/rgb_0673_disparity.npz
281
- NYUv2/test/bathroom_0020/rgb_0676_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0676_disparity.npz
282
- NYUv2/test/bathroom_0020/rgb_0677_rgb_left.mp4,NYUv2/test/bathroom_0020/rgb_0677_disparity.npz
283
- NYUv2/test/bathroom_0021/rgb_0678_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0678_disparity.npz
284
- NYUv2/test/bathroom_0021/rgb_0679_rgb_left.mp4,NYUv2/test/bathroom_0021/rgb_0679_disparity.npz
285
- NYUv2/test/bathroom_0022/rgb_0680_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0680_disparity.npz
286
- NYUv2/test/bathroom_0022/rgb_0681_rgb_left.mp4,NYUv2/test/bathroom_0022/rgb_0681_disparity.npz
287
- NYUv2/test/bathroom_0025/rgb_0686_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0686_disparity.npz
288
- NYUv2/test/bathroom_0025/rgb_0687_rgb_left.mp4,NYUv2/test/bathroom_0025/rgb_0687_disparity.npz
289
- NYUv2/test/bathroom_0026/rgb_0688_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0688_disparity.npz
290
- NYUv2/test/bathroom_0026/rgb_0689_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0689_disparity.npz
291
- NYUv2/test/bathroom_0026/rgb_0690_rgb_left.mp4,NYUv2/test/bathroom_0026/rgb_0690_disparity.npz
292
- NYUv2/test/bathroom_0029/rgb_0693_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0693_disparity.npz
293
- NYUv2/test/bathroom_0029/rgb_0694_rgb_left.mp4,NYUv2/test/bathroom_0029/rgb_0694_disparity.npz
294
- NYUv2/test/bathroom_0031/rgb_0697_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0697_disparity.npz
295
- NYUv2/test/bathroom_0031/rgb_0698_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0698_disparity.npz
296
- NYUv2/test/bathroom_0031/rgb_0699_rgb_left.mp4,NYUv2/test/bathroom_0031/rgb_0699_disparity.npz
297
- NYUv2/test/bathroom_0036/rgb_0706_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0706_disparity.npz
298
- NYUv2/test/bathroom_0036/rgb_0707_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0707_disparity.npz
299
- NYUv2/test/bathroom_0036/rgb_0708_rgb_left.mp4,NYUv2/test/bathroom_0036/rgb_0708_disparity.npz
300
- NYUv2/test/bathroom_0037/rgb_0709_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0709_disparity.npz
301
- NYUv2/test/bathroom_0037/rgb_0710_rgb_left.mp4,NYUv2/test/bathroom_0037/rgb_0710_disparity.npz
302
- NYUv2/test/bathroom_0038/rgb_0711_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0711_disparity.npz
303
- NYUv2/test/bathroom_0038/rgb_0712_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0712_disparity.npz
304
- NYUv2/test/bathroom_0038/rgb_0713_rgb_left.mp4,NYUv2/test/bathroom_0038/rgb_0713_disparity.npz
305
- NYUv2/test/bathroom_0040/rgb_0717_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0717_disparity.npz
306
- NYUv2/test/bathroom_0040/rgb_0718_rgb_left.mp4,NYUv2/test/bathroom_0040/rgb_0718_disparity.npz
307
- NYUv2/test/bathroom_0043/rgb_0724_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0724_disparity.npz
308
- NYUv2/test/bathroom_0043/rgb_0725_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0725_disparity.npz
309
- NYUv2/test/bathroom_0043/rgb_0726_rgb_left.mp4,NYUv2/test/bathroom_0043/rgb_0726_disparity.npz
310
- NYUv2/test/bathroom_0044/rgb_0727_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0727_disparity.npz
311
- NYUv2/test/bathroom_0044/rgb_0728_rgb_left.mp4,NYUv2/test/bathroom_0044/rgb_0728_disparity.npz
312
- NYUv2/test/bathroom_0046/rgb_0731_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0731_disparity.npz
313
- NYUv2/test/bathroom_0046/rgb_0732_rgb_left.mp4,NYUv2/test/bathroom_0046/rgb_0732_disparity.npz
314
- NYUv2/test/bathroom_0047/rgb_0733_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0733_disparity.npz
315
- NYUv2/test/bathroom_0047/rgb_0734_rgb_left.mp4,NYUv2/test/bathroom_0047/rgb_0734_disparity.npz
316
- NYUv2/test/bathroom_0052/rgb_0743_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0743_disparity.npz
317
- NYUv2/test/bathroom_0052/rgb_0744_rgb_left.mp4,NYUv2/test/bathroom_0052/rgb_0744_disparity.npz
318
- NYUv2/test/kitchen_0021/rgb_0759_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0759_disparity.npz
319
- NYUv2/test/kitchen_0021/rgb_0760_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0760_disparity.npz
320
- NYUv2/test/kitchen_0021/rgb_0761_rgb_left.mp4,NYUv2/test/kitchen_0021/rgb_0761_disparity.npz
321
- NYUv2/test/kitchen_0022/rgb_0762_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0762_disparity.npz
322
- NYUv2/test/kitchen_0022/rgb_0763_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0763_disparity.npz
323
- NYUv2/test/kitchen_0022/rgb_0764_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0764_disparity.npz
324
- NYUv2/test/kitchen_0022/rgb_0765_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0765_disparity.npz
325
- NYUv2/test/kitchen_0022/rgb_0766_rgb_left.mp4,NYUv2/test/kitchen_0022/rgb_0766_disparity.npz
326
- NYUv2/test/kitchen_0023/rgb_0767_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0767_disparity.npz
327
- NYUv2/test/kitchen_0023/rgb_0768_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0768_disparity.npz
328
- NYUv2/test/kitchen_0023/rgb_0769_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0769_disparity.npz
329
- NYUv2/test/kitchen_0023/rgb_0770_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0770_disparity.npz
330
- NYUv2/test/kitchen_0023/rgb_0771_rgb_left.mp4,NYUv2/test/kitchen_0023/rgb_0771_disparity.npz
331
- NYUv2/test/kitchen_0024/rgb_0772_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0772_disparity.npz
332
- NYUv2/test/kitchen_0024/rgb_0773_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0773_disparity.npz
333
- NYUv2/test/kitchen_0024/rgb_0774_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0774_disparity.npz
334
- NYUv2/test/kitchen_0024/rgb_0775_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0775_disparity.npz
335
- NYUv2/test/kitchen_0024/rgb_0776_rgb_left.mp4,NYUv2/test/kitchen_0024/rgb_0776_disparity.npz
336
- NYUv2/test/kitchen_0025/rgb_0777_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0777_disparity.npz
337
- NYUv2/test/kitchen_0025/rgb_0778_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0778_disparity.npz
338
- NYUv2/test/kitchen_0025/rgb_0779_rgb_left.mp4,NYUv2/test/kitchen_0025/rgb_0779_disparity.npz
339
- NYUv2/test/kitchen_0026/rgb_0780_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0780_disparity.npz
340
- NYUv2/test/kitchen_0026/rgb_0781_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0781_disparity.npz
341
- NYUv2/test/kitchen_0026/rgb_0782_rgb_left.mp4,NYUv2/test/kitchen_0026/rgb_0782_disparity.npz
342
- NYUv2/test/kitchen_0027/rgb_0783_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0783_disparity.npz
343
- NYUv2/test/kitchen_0027/rgb_0784_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0784_disparity.npz
344
- NYUv2/test/kitchen_0027/rgb_0785_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0785_disparity.npz
345
- NYUv2/test/kitchen_0027/rgb_0786_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0786_disparity.npz
346
- NYUv2/test/kitchen_0027/rgb_0787_rgb_left.mp4,NYUv2/test/kitchen_0027/rgb_0787_disparity.npz
347
- NYUv2/test/kitchen_0030/rgb_0800_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0800_disparity.npz
348
- NYUv2/test/kitchen_0030/rgb_0801_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0801_disparity.npz
349
- NYUv2/test/kitchen_0030/rgb_0802_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0802_disparity.npz
350
- NYUv2/test/kitchen_0030/rgb_0803_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0803_disparity.npz
351
- NYUv2/test/kitchen_0030/rgb_0804_rgb_left.mp4,NYUv2/test/kitchen_0030/rgb_0804_disparity.npz
352
- NYUv2/test/kitchen_0032/rgb_0810_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0810_disparity.npz
353
- NYUv2/test/kitchen_0032/rgb_0811_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0811_disparity.npz
354
- NYUv2/test/kitchen_0032/rgb_0812_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0812_disparity.npz
355
- NYUv2/test/kitchen_0032/rgb_0813_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0813_disparity.npz
356
- NYUv2/test/kitchen_0032/rgb_0814_rgb_left.mp4,NYUv2/test/kitchen_0032/rgb_0814_disparity.npz
357
- NYUv2/test/kitchen_0034/rgb_0821_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0821_disparity.npz
358
- NYUv2/test/kitchen_0034/rgb_0822_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0822_disparity.npz
359
- NYUv2/test/kitchen_0034/rgb_0823_rgb_left.mp4,NYUv2/test/kitchen_0034/rgb_0823_disparity.npz
360
- NYUv2/test/kitchen_0038/rgb_0833_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0833_disparity.npz
361
- NYUv2/test/kitchen_0038/rgb_0834_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0834_disparity.npz
362
- NYUv2/test/kitchen_0038/rgb_0835_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0835_disparity.npz
363
- NYUv2/test/kitchen_0038/rgb_0836_rgb_left.mp4,NYUv2/test/kitchen_0038/rgb_0836_disparity.npz
364
- NYUv2/test/kitchen_0039/rgb_0837_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0837_disparity.npz
365
- NYUv2/test/kitchen_0039/rgb_0838_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0838_disparity.npz
366
- NYUv2/test/kitchen_0039/rgb_0839_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0839_disparity.npz
367
- NYUv2/test/kitchen_0039/rgb_0840_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0840_disparity.npz
368
- NYUv2/test/kitchen_0039/rgb_0841_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0841_disparity.npz
369
- NYUv2/test/kitchen_0039/rgb_0842_rgb_left.mp4,NYUv2/test/kitchen_0039/rgb_0842_disparity.npz
370
- NYUv2/test/kitchen_0040/rgb_0843_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0843_disparity.npz
371
- NYUv2/test/kitchen_0040/rgb_0844_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0844_disparity.npz
372
- NYUv2/test/kitchen_0040/rgb_0845_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0845_disparity.npz
373
- NYUv2/test/kitchen_0040/rgb_0846_rgb_left.mp4,NYUv2/test/kitchen_0040/rgb_0846_disparity.npz
374
- NYUv2/test/kitchen_0042/rgb_0850_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0850_disparity.npz
375
- NYUv2/test/kitchen_0042/rgb_0851_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0851_disparity.npz
376
- NYUv2/test/kitchen_0042/rgb_0852_rgb_left.mp4,NYUv2/test/kitchen_0042/rgb_0852_disparity.npz
377
- NYUv2/test/kitchen_0044/rgb_0857_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0857_disparity.npz
378
- NYUv2/test/kitchen_0044/rgb_0858_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0858_disparity.npz
379
- NYUv2/test/kitchen_0044/rgb_0859_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0859_disparity.npz
380
- NYUv2/test/kitchen_0044/rgb_0860_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0860_disparity.npz
381
- NYUv2/test/kitchen_0044/rgb_0861_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0861_disparity.npz
382
- NYUv2/test/kitchen_0044/rgb_0862_rgb_left.mp4,NYUv2/test/kitchen_0044/rgb_0862_disparity.npz
383
- NYUv2/test/kitchen_0046/rgb_0869_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0869_disparity.npz
384
- NYUv2/test/kitchen_0046/rgb_0870_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0870_disparity.npz
385
- NYUv2/test/kitchen_0046/rgb_0871_rgb_left.mp4,NYUv2/test/kitchen_0046/rgb_0871_disparity.npz
386
- NYUv2/test/kitchen_0054/rgb_0906_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0906_disparity.npz
387
- NYUv2/test/kitchen_0054/rgb_0907_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0907_disparity.npz
388
- NYUv2/test/kitchen_0054/rgb_0908_rgb_left.mp4,NYUv2/test/kitchen_0054/rgb_0908_disparity.npz
389
- NYUv2/test/bedroom_0027/rgb_0917_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0917_disparity.npz
390
- NYUv2/test/bedroom_0027/rgb_0918_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0918_disparity.npz
391
- NYUv2/test/bedroom_0027/rgb_0919_rgb_left.mp4,NYUv2/test/bedroom_0027/rgb_0919_disparity.npz
392
- NYUv2/test/bedroom_0030/rgb_0926_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0926_disparity.npz
393
- NYUv2/test/bedroom_0030/rgb_0927_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0927_disparity.npz
394
- NYUv2/test/bedroom_0030/rgb_0928_rgb_left.mp4,NYUv2/test/bedroom_0030/rgb_0928_disparity.npz
395
- NYUv2/test/bedroom_0032/rgb_0932_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0932_disparity.npz
396
- NYUv2/test/bedroom_0032/rgb_0933_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0933_disparity.npz
397
- NYUv2/test/bedroom_0032/rgb_0934_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0934_disparity.npz
398
- NYUv2/test/bedroom_0032/rgb_0935_rgb_left.mp4,NYUv2/test/bedroom_0032/rgb_0935_disparity.npz
399
- NYUv2/test/bedroom_0037/rgb_0945_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0945_disparity.npz
400
- NYUv2/test/bedroom_0037/rgb_0946_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0946_disparity.npz
401
- NYUv2/test/bedroom_0037/rgb_0947_rgb_left.mp4,NYUv2/test/bedroom_0037/rgb_0947_disparity.npz
402
- NYUv2/test/bedroom_0043/rgb_0959_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0959_disparity.npz
403
- NYUv2/test/bedroom_0043/rgb_0960_rgb_left.mp4,NYUv2/test/bedroom_0043/rgb_0960_disparity.npz
404
- NYUv2/test/bedroom_0044/rgb_0961_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0961_disparity.npz
405
- NYUv2/test/bedroom_0044/rgb_0962_rgb_left.mp4,NYUv2/test/bedroom_0044/rgb_0962_disparity.npz
406
- NYUv2/test/bedroom_0046/rgb_0965_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0965_disparity.npz
407
- NYUv2/test/bedroom_0046/rgb_0966_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0966_disparity.npz
408
- NYUv2/test/bedroom_0046/rgb_0967_rgb_left.mp4,NYUv2/test/bedroom_0046/rgb_0967_disparity.npz
409
- NYUv2/test/bedroom_0048/rgb_0970_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0970_disparity.npz
410
- NYUv2/test/bedroom_0048/rgb_0971_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0971_disparity.npz
411
- NYUv2/test/bedroom_0048/rgb_0972_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0972_disparity.npz
412
- NYUv2/test/bedroom_0048/rgb_0973_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0973_disparity.npz
413
- NYUv2/test/bedroom_0048/rgb_0974_rgb_left.mp4,NYUv2/test/bedroom_0048/rgb_0974_disparity.npz
414
- NYUv2/test/bedroom_0049/rgb_0975_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0975_disparity.npz
415
- NYUv2/test/bedroom_0049/rgb_0976_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0976_disparity.npz
416
- NYUv2/test/bedroom_0049/rgb_0977_rgb_left.mp4,NYUv2/test/bedroom_0049/rgb_0977_disparity.npz
417
- NYUv2/test/bedroom_0054/rgb_0991_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0991_disparity.npz
418
- NYUv2/test/bedroom_0054/rgb_0992_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0992_disparity.npz
419
- NYUv2/test/bedroom_0054/rgb_0993_rgb_left.mp4,NYUv2/test/bedroom_0054/rgb_0993_disparity.npz
420
- NYUv2/test/bedroom_0055/rgb_0994_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0994_disparity.npz
421
- NYUv2/test/bedroom_0055/rgb_0995_rgb_left.mp4,NYUv2/test/bedroom_0055/rgb_0995_disparity.npz
422
- NYUv2/test/bedroom_0058/rgb_1001_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1001_disparity.npz
423
- NYUv2/test/bedroom_0058/rgb_1002_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1002_disparity.npz
424
- NYUv2/test/bedroom_0058/rgb_1003_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1003_disparity.npz
425
- NYUv2/test/bedroom_0058/rgb_1004_rgb_left.mp4,NYUv2/test/bedroom_0058/rgb_1004_disparity.npz
426
- NYUv2/test/bedroom_0061/rgb_1010_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1010_disparity.npz
427
- NYUv2/test/bedroom_0061/rgb_1011_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1011_disparity.npz
428
- NYUv2/test/bedroom_0061/rgb_1012_rgb_left.mp4,NYUv2/test/bedroom_0061/rgb_1012_disparity.npz
429
- NYUv2/test/bedroom_0064/rgb_1021_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1021_disparity.npz
430
- NYUv2/test/bedroom_0064/rgb_1022_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1022_disparity.npz
431
- NYUv2/test/bedroom_0064/rgb_1023_rgb_left.mp4,NYUv2/test/bedroom_0064/rgb_1023_disparity.npz
432
- NYUv2/test/bedroom_0068/rgb_1032_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1032_disparity.npz
433
- NYUv2/test/bedroom_0068/rgb_1033_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1033_disparity.npz
434
- NYUv2/test/bedroom_0068/rgb_1034_rgb_left.mp4,NYUv2/test/bedroom_0068/rgb_1034_disparity.npz
435
- NYUv2/test/bedroom_0070/rgb_1038_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1038_disparity.npz
436
- NYUv2/test/bedroom_0070/rgb_1039_rgb_left.mp4,NYUv2/test/bedroom_0070/rgb_1039_disparity.npz
437
- NYUv2/test/bedroom_0073/rgb_1048_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1048_disparity.npz
438
- NYUv2/test/bedroom_0073/rgb_1049_rgb_left.mp4,NYUv2/test/bedroom_0073/rgb_1049_disparity.npz
439
- NYUv2/test/bedroom_0075/rgb_1052_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1052_disparity.npz
440
- NYUv2/test/bedroom_0075/rgb_1053_rgb_left.mp4,NYUv2/test/bedroom_0075/rgb_1053_disparity.npz
441
- NYUv2/test/bedroom_0077/rgb_1057_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1057_disparity.npz
442
- NYUv2/test/bedroom_0077/rgb_1058_rgb_left.mp4,NYUv2/test/bedroom_0077/rgb_1058_disparity.npz
443
- NYUv2/test/bedroom_0083/rgb_1075_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1075_disparity.npz
444
- NYUv2/test/bedroom_0083/rgb_1076_rgb_left.mp4,NYUv2/test/bedroom_0083/rgb_1076_disparity.npz
445
- NYUv2/test/bedroom_0084/rgb_1077_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1077_disparity.npz
446
- NYUv2/test/bedroom_0084/rgb_1078_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1078_disparity.npz
447
- NYUv2/test/bedroom_0084/rgb_1079_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1079_disparity.npz
448
- NYUv2/test/bedroom_0084/rgb_1080_rgb_left.mp4,NYUv2/test/bedroom_0084/rgb_1080_disparity.npz
449
- NYUv2/test/bedroom_0085/rgb_1081_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1081_disparity.npz
450
- NYUv2/test/bedroom_0085/rgb_1082_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1082_disparity.npz
451
- NYUv2/test/bedroom_0085/rgb_1083_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1083_disparity.npz
452
- NYUv2/test/bedroom_0085/rgb_1084_rgb_left.mp4,NYUv2/test/bedroom_0085/rgb_1084_disparity.npz
453
- NYUv2/test/bedroom_0087/rgb_1088_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1088_disparity.npz
454
- NYUv2/test/bedroom_0087/rgb_1089_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1089_disparity.npz
455
- NYUv2/test/bedroom_0087/rgb_1090_rgb_left.mp4,NYUv2/test/bedroom_0087/rgb_1090_disparity.npz
456
- NYUv2/test/bedroom_0088/rgb_1091_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1091_disparity.npz
457
- NYUv2/test/bedroom_0088/rgb_1092_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1092_disparity.npz
458
- NYUv2/test/bedroom_0088/rgb_1093_rgb_left.mp4,NYUv2/test/bedroom_0088/rgb_1093_disparity.npz
459
- NYUv2/test/bedroom_0089/rgb_1094_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1094_disparity.npz
460
- NYUv2/test/bedroom_0089/rgb_1095_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1095_disparity.npz
461
- NYUv2/test/bedroom_0089/rgb_1096_rgb_left.mp4,NYUv2/test/bedroom_0089/rgb_1096_disparity.npz
462
- NYUv2/test/bedroom_0091/rgb_1098_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1098_disparity.npz
463
- NYUv2/test/bedroom_0091/rgb_1099_rgb_left.mp4,NYUv2/test/bedroom_0091/rgb_1099_disparity.npz
464
- NYUv2/test/bedroom_0092/rgb_1100_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1100_disparity.npz
465
- NYUv2/test/bedroom_0092/rgb_1101_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1101_disparity.npz
466
- NYUv2/test/bedroom_0092/rgb_1102_rgb_left.mp4,NYUv2/test/bedroom_0092/rgb_1102_disparity.npz
467
- NYUv2/test/bedroom_0093/rgb_1103_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1103_disparity.npz
468
- NYUv2/test/bedroom_0093/rgb_1104_rgb_left.mp4,NYUv2/test/bedroom_0093/rgb_1104_disparity.npz
469
- NYUv2/test/bedroom_0095/rgb_1106_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1106_disparity.npz
470
- NYUv2/test/bedroom_0095/rgb_1107_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1107_disparity.npz
471
- NYUv2/test/bedroom_0095/rgb_1108_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1108_disparity.npz
472
- NYUv2/test/bedroom_0095/rgb_1109_rgb_left.mp4,NYUv2/test/bedroom_0095/rgb_1109_disparity.npz
473
- NYUv2/test/bedroom_0099/rgb_1117_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1117_disparity.npz
474
- NYUv2/test/bedroom_0099/rgb_1118_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1118_disparity.npz
475
- NYUv2/test/bedroom_0099/rgb_1119_rgb_left.mp4,NYUv2/test/bedroom_0099/rgb_1119_disparity.npz
476
- NYUv2/test/bedroom_0101/rgb_1123_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1123_disparity.npz
477
- NYUv2/test/bedroom_0101/rgb_1124_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1124_disparity.npz
478
- NYUv2/test/bedroom_0101/rgb_1125_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1125_disparity.npz
479
- NYUv2/test/bedroom_0101/rgb_1126_rgb_left.mp4,NYUv2/test/bedroom_0101/rgb_1126_disparity.npz
480
- NYUv2/test/bedroom_0102/rgb_1127_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1127_disparity.npz
481
- NYUv2/test/bedroom_0102/rgb_1128_rgb_left.mp4,NYUv2/test/bedroom_0102/rgb_1128_disparity.npz
482
- NYUv2/test/bedroom_0103/rgb_1129_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1129_disparity.npz
483
- NYUv2/test/bedroom_0103/rgb_1130_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1130_disparity.npz
484
- NYUv2/test/bedroom_0103/rgb_1131_rgb_left.mp4,NYUv2/test/bedroom_0103/rgb_1131_disparity.npz
485
- NYUv2/test/bedroom_0105/rgb_1135_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1135_disparity.npz
486
- NYUv2/test/bedroom_0105/rgb_1136_rgb_left.mp4,NYUv2/test/bedroom_0105/rgb_1136_disparity.npz
487
- NYUv2/test/bedroom_0108/rgb_1144_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1144_disparity.npz
488
- NYUv2/test/bedroom_0108/rgb_1145_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1145_disparity.npz
489
- NYUv2/test/bedroom_0108/rgb_1146_rgb_left.mp4,NYUv2/test/bedroom_0108/rgb_1146_disparity.npz
490
- NYUv2/test/bedroom_0109/rgb_1147_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1147_disparity.npz
491
- NYUv2/test/bedroom_0109/rgb_1148_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1148_disparity.npz
492
- NYUv2/test/bedroom_0109/rgb_1149_rgb_left.mp4,NYUv2/test/bedroom_0109/rgb_1149_disparity.npz
493
- NYUv2/test/bedroom_0110/rgb_1150_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1150_disparity.npz
494
- NYUv2/test/bedroom_0110/rgb_1151_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1151_disparity.npz
495
- NYUv2/test/bedroom_0110/rgb_1152_rgb_left.mp4,NYUv2/test/bedroom_0110/rgb_1152_disparity.npz
496
- NYUv2/test/bedroom_0111/rgb_1153_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1153_disparity.npz
497
- NYUv2/test/bedroom_0111/rgb_1154_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1154_disparity.npz
498
- NYUv2/test/bedroom_0111/rgb_1155_rgb_left.mp4,NYUv2/test/bedroom_0111/rgb_1155_disparity.npz
499
- NYUv2/test/bedroom_0112/rgb_1156_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1156_disparity.npz
500
- NYUv2/test/bedroom_0112/rgb_1157_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1157_disparity.npz
501
- NYUv2/test/bedroom_0112/rgb_1158_rgb_left.mp4,NYUv2/test/bedroom_0112/rgb_1158_disparity.npz
502
- NYUv2/test/bedroom_0114/rgb_1162_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1162_disparity.npz
503
- NYUv2/test/bedroom_0114/rgb_1163_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1163_disparity.npz
504
- NYUv2/test/bedroom_0114/rgb_1164_rgb_left.mp4,NYUv2/test/bedroom_0114/rgb_1164_disparity.npz
505
- NYUv2/test/bedroom_0115/rgb_1165_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1165_disparity.npz
506
- NYUv2/test/bedroom_0115/rgb_1166_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1166_disparity.npz
507
- NYUv2/test/bedroom_0115/rgb_1167_rgb_left.mp4,NYUv2/test/bedroom_0115/rgb_1167_disparity.npz
508
- NYUv2/test/bedroom_0117/rgb_1170_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1170_disparity.npz
509
- NYUv2/test/bedroom_0117/rgb_1171_rgb_left.mp4,NYUv2/test/bedroom_0117/rgb_1171_disparity.npz
510
- NYUv2/test/bedroom_0119/rgb_1174_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1174_disparity.npz
511
- NYUv2/test/bedroom_0119/rgb_1175_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1175_disparity.npz
512
- NYUv2/test/bedroom_0119/rgb_1176_rgb_left.mp4,NYUv2/test/bedroom_0119/rgb_1176_disparity.npz
513
- NYUv2/test/bedroom_0121/rgb_1179_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1179_disparity.npz
514
- NYUv2/test/bedroom_0121/rgb_1180_rgb_left.mp4,NYUv2/test/bedroom_0121/rgb_1180_disparity.npz
515
- NYUv2/test/bedroom_0122/rgb_1181_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1181_disparity.npz
516
- NYUv2/test/bedroom_0122/rgb_1182_rgb_left.mp4,NYUv2/test/bedroom_0122/rgb_1182_disparity.npz
517
- NYUv2/test/bedroom_0123/rgb_1183_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1183_disparity.npz
518
- NYUv2/test/bedroom_0123/rgb_1184_rgb_left.mp4,NYUv2/test/bedroom_0123/rgb_1184_disparity.npz
519
- NYUv2/test/bedroom_0127/rgb_1192_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1192_disparity.npz
520
- NYUv2/test/bedroom_0127/rgb_1193_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1193_disparity.npz
521
- NYUv2/test/bedroom_0127/rgb_1194_rgb_left.mp4,NYUv2/test/bedroom_0127/rgb_1194_disparity.npz
522
- NYUv2/test/bedroom_0128/rgb_1195_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1195_disparity.npz
523
- NYUv2/test/bedroom_0128/rgb_1196_rgb_left.mp4,NYUv2/test/bedroom_0128/rgb_1196_disparity.npz
524
- NYUv2/test/living_room_0025/rgb_1201_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1201_disparity.npz
525
- NYUv2/test/living_room_0025/rgb_1202_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1202_disparity.npz
526
- NYUv2/test/living_room_0025/rgb_1203_rgb_left.mp4,NYUv2/test/living_room_0025/rgb_1203_disparity.npz
527
- NYUv2/test/living_room_0026/rgb_1204_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1204_disparity.npz
528
- NYUv2/test/living_room_0026/rgb_1205_rgb_left.mp4,NYUv2/test/living_room_0026/rgb_1205_disparity.npz
529
- NYUv2/test/living_room_0027/rgb_1206_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1206_disparity.npz
530
- NYUv2/test/living_room_0027/rgb_1207_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1207_disparity.npz
531
- NYUv2/test/living_room_0027/rgb_1208_rgb_left.mp4,NYUv2/test/living_room_0027/rgb_1208_disparity.npz
532
- NYUv2/test/living_room_0028/rgb_1209_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1209_disparity.npz
533
- NYUv2/test/living_room_0028/rgb_1210_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1210_disparity.npz
534
- NYUv2/test/living_room_0028/rgb_1211_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1211_disparity.npz
535
- NYUv2/test/living_room_0028/rgb_1212_rgb_left.mp4,NYUv2/test/living_room_0028/rgb_1212_disparity.npz
536
- NYUv2/test/living_room_0030/rgb_1216_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1216_disparity.npz
537
- NYUv2/test/living_room_0030/rgb_1217_rgb_left.mp4,NYUv2/test/living_room_0030/rgb_1217_disparity.npz
538
- NYUv2/test/living_room_0031/rgb_1218_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1218_disparity.npz
539
- NYUv2/test/living_room_0031/rgb_1219_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1219_disparity.npz
540
- NYUv2/test/living_room_0031/rgb_1220_rgb_left.mp4,NYUv2/test/living_room_0031/rgb_1220_disparity.npz
541
- NYUv2/test/living_room_0034/rgb_1226_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1226_disparity.npz
542
- NYUv2/test/living_room_0034/rgb_1227_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1227_disparity.npz
543
- NYUv2/test/living_room_0034/rgb_1228_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1228_disparity.npz
544
- NYUv2/test/living_room_0034/rgb_1229_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1229_disparity.npz
545
- NYUv2/test/living_room_0034/rgb_1230_rgb_left.mp4,NYUv2/test/living_room_0034/rgb_1230_disparity.npz
546
- NYUv2/test/living_room_0036/rgb_1233_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1233_disparity.npz
547
- NYUv2/test/living_room_0036/rgb_1234_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1234_disparity.npz
548
- NYUv2/test/living_room_0036/rgb_1235_rgb_left.mp4,NYUv2/test/living_room_0036/rgb_1235_disparity.npz
549
- NYUv2/test/living_room_0041/rgb_1247_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1247_disparity.npz
550
- NYUv2/test/living_room_0041/rgb_1248_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1248_disparity.npz
551
- NYUv2/test/living_room_0041/rgb_1249_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1249_disparity.npz
552
- NYUv2/test/living_room_0041/rgb_1250_rgb_left.mp4,NYUv2/test/living_room_0041/rgb_1250_disparity.npz
553
- NYUv2/test/living_room_0043/rgb_1254_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1254_disparity.npz
554
- NYUv2/test/living_room_0043/rgb_1255_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1255_disparity.npz
555
- NYUv2/test/living_room_0043/rgb_1256_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1256_disparity.npz
556
- NYUv2/test/living_room_0043/rgb_1257_rgb_left.mp4,NYUv2/test/living_room_0043/rgb_1257_disparity.npz
557
- NYUv2/test/living_room_0044/rgb_1258_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1258_disparity.npz
558
- NYUv2/test/living_room_0044/rgb_1259_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1259_disparity.npz
559
- NYUv2/test/living_room_0044/rgb_1260_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1260_disparity.npz
560
- NYUv2/test/living_room_0044/rgb_1261_rgb_left.mp4,NYUv2/test/living_room_0044/rgb_1261_disparity.npz
561
- NYUv2/test/living_room_0045/rgb_1262_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1262_disparity.npz
562
- NYUv2/test/living_room_0045/rgb_1263_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1263_disparity.npz
563
- NYUv2/test/living_room_0045/rgb_1264_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1264_disparity.npz
564
- NYUv2/test/living_room_0045/rgb_1265_rgb_left.mp4,NYUv2/test/living_room_0045/rgb_1265_disparity.npz
565
- NYUv2/test/living_room_0048/rgb_1275_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1275_disparity.npz
566
- NYUv2/test/living_room_0048/rgb_1276_rgb_left.mp4,NYUv2/test/living_room_0048/rgb_1276_disparity.npz
567
- NYUv2/test/living_room_0049/rgb_1277_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1277_disparity.npz
568
- NYUv2/test/living_room_0049/rgb_1278_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1278_disparity.npz
569
- NYUv2/test/living_room_0049/rgb_1279_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1279_disparity.npz
570
- NYUv2/test/living_room_0049/rgb_1280_rgb_left.mp4,NYUv2/test/living_room_0049/rgb_1280_disparity.npz
571
- NYUv2/test/living_room_0051/rgb_1285_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1285_disparity.npz
572
- NYUv2/test/living_room_0051/rgb_1286_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1286_disparity.npz
573
- NYUv2/test/living_room_0051/rgb_1287_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1287_disparity.npz
574
- NYUv2/test/living_room_0051/rgb_1288_rgb_left.mp4,NYUv2/test/living_room_0051/rgb_1288_disparity.npz
575
- NYUv2/test/living_room_0052/rgb_1289_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1289_disparity.npz
576
- NYUv2/test/living_room_0052/rgb_1290_rgb_left.mp4,NYUv2/test/living_room_0052/rgb_1290_disparity.npz
577
- NYUv2/test/living_room_0053/rgb_1291_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1291_disparity.npz
578
- NYUv2/test/living_room_0053/rgb_1292_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1292_disparity.npz
579
- NYUv2/test/living_room_0053/rgb_1293_rgb_left.mp4,NYUv2/test/living_room_0053/rgb_1293_disparity.npz
580
- NYUv2/test/living_room_0054/rgb_1294_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1294_disparity.npz
581
- NYUv2/test/living_room_0054/rgb_1295_rgb_left.mp4,NYUv2/test/living_room_0054/rgb_1295_disparity.npz
582
- NYUv2/test/living_room_0056/rgb_1297_rgb_left.mp4,NYUv2/test/living_room_0056/rgb_1297_disparity.npz
583
- NYUv2/test/living_room_0057/rgb_1298_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1298_disparity.npz
584
- NYUv2/test/living_room_0057/rgb_1299_rgb_left.mp4,NYUv2/test/living_room_0057/rgb_1299_disparity.npz
585
- NYUv2/test/living_room_0059/rgb_1302_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1302_disparity.npz
586
- NYUv2/test/living_room_0059/rgb_1303_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1303_disparity.npz
587
- NYUv2/test/living_room_0059/rgb_1304_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1304_disparity.npz
588
- NYUv2/test/living_room_0059/rgb_1305_rgb_left.mp4,NYUv2/test/living_room_0059/rgb_1305_disparity.npz
589
- NYUv2/test/living_room_0060/rgb_1306_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1306_disparity.npz
590
- NYUv2/test/living_room_0060/rgb_1307_rgb_left.mp4,NYUv2/test/living_room_0060/rgb_1307_disparity.npz
591
- NYUv2/test/living_room_0061/rgb_1308_rgb_left.mp4,NYUv2/test/living_room_0061/rgb_1308_disparity.npz
592
- NYUv2/test/living_room_0064/rgb_1314_rgb_left.mp4,NYUv2/test/living_room_0064/rgb_1314_disparity.npz
593
- NYUv2/test/living_room_0066/rgb_1315_rgb_left.mp4,NYUv2/test/living_room_0066/rgb_1315_disparity.npz
594
- NYUv2/test/living_room_0072/rgb_1329_rgb_left.mp4,NYUv2/test/living_room_0072/rgb_1329_disparity.npz
595
- NYUv2/test/living_room_0075/rgb_1330_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1330_disparity.npz
596
- NYUv2/test/living_room_0075/rgb_1331_rgb_left.mp4,NYUv2/test/living_room_0075/rgb_1331_disparity.npz
597
- NYUv2/test/living_room_0076/rgb_1332_rgb_left.mp4,NYUv2/test/living_room_0076/rgb_1332_disparity.npz
598
- NYUv2/test/living_room_0079/rgb_1335_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1335_disparity.npz
599
- NYUv2/test/living_room_0079/rgb_1336_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1336_disparity.npz
600
- NYUv2/test/living_room_0079/rgb_1337_rgb_left.mp4,NYUv2/test/living_room_0079/rgb_1337_disparity.npz
601
- NYUv2/test/living_room_0080/rgb_1338_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1338_disparity.npz
602
- NYUv2/test/living_room_0080/rgb_1339_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1339_disparity.npz
603
- NYUv2/test/living_room_0080/rgb_1340_rgb_left.mp4,NYUv2/test/living_room_0080/rgb_1340_disparity.npz
604
- NYUv2/test/dining_room_0003/rgb_1347_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1347_disparity.npz
605
- NYUv2/test/dining_room_0003/rgb_1348_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1348_disparity.npz
606
- NYUv2/test/dining_room_0003/rgb_1349_rgb_left.mp4,NYUv2/test/dining_room_0003/rgb_1349_disparity.npz
607
- NYUv2/test/dining_room_0005/rgb_1353_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1353_disparity.npz
608
- NYUv2/test/dining_room_0005/rgb_1354_rgb_left.mp4,NYUv2/test/dining_room_0005/rgb_1354_disparity.npz
609
- NYUv2/test/dining_room_0006/rgb_1355_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1355_disparity.npz
610
- NYUv2/test/dining_room_0006/rgb_1356_rgb_left.mp4,NYUv2/test/dining_room_0006/rgb_1356_disparity.npz
611
- NYUv2/test/dining_room_0009/rgb_1364_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1364_disparity.npz
612
- NYUv2/test/dining_room_0009/rgb_1365_rgb_left.mp4,NYUv2/test/dining_room_0009/rgb_1365_disparity.npz
613
- NYUv2/test/dining_room_0011/rgb_1368_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1368_disparity.npz
614
- NYUv2/test/dining_room_0011/rgb_1369_rgb_left.mp4,NYUv2/test/dining_room_0011/rgb_1369_disparity.npz
615
- NYUv2/test/dining_room_0017/rgb_1384_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1384_disparity.npz
616
- NYUv2/test/dining_room_0017/rgb_1385_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1385_disparity.npz
617
- NYUv2/test/dining_room_0017/rgb_1386_rgb_left.mp4,NYUv2/test/dining_room_0017/rgb_1386_disparity.npz
618
- NYUv2/test/dining_room_0018/rgb_1387_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1387_disparity.npz
619
- NYUv2/test/dining_room_0018/rgb_1388_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1388_disparity.npz
620
- NYUv2/test/dining_room_0018/rgb_1389_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1389_disparity.npz
621
- NYUv2/test/dining_room_0018/rgb_1390_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1390_disparity.npz
622
- NYUv2/test/dining_room_0018/rgb_1391_rgb_left.mp4,NYUv2/test/dining_room_0018/rgb_1391_disparity.npz
623
- NYUv2/test/dining_room_0020/rgb_1394_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1394_disparity.npz
624
- NYUv2/test/dining_room_0020/rgb_1395_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1395_disparity.npz
625
- NYUv2/test/dining_room_0020/rgb_1396_rgb_left.mp4,NYUv2/test/dining_room_0020/rgb_1396_disparity.npz
626
- NYUv2/test/dining_room_0021/rgb_1397_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1397_disparity.npz
627
- NYUv2/test/dining_room_0021/rgb_1398_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1398_disparity.npz
628
- NYUv2/test/dining_room_0021/rgb_1399_rgb_left.mp4,NYUv2/test/dining_room_0021/rgb_1399_disparity.npz
629
- NYUv2/test/dining_room_0022/rgb_1400_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1400_disparity.npz
630
- NYUv2/test/dining_room_0022/rgb_1401_rgb_left.mp4,NYUv2/test/dining_room_0022/rgb_1401_disparity.npz
631
- NYUv2/test/dining_room_0025/rgb_1407_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1407_disparity.npz
632
- NYUv2/test/dining_room_0025/rgb_1408_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1408_disparity.npz
633
- NYUv2/test/dining_room_0025/rgb_1409_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1409_disparity.npz
634
- NYUv2/test/dining_room_0025/rgb_1410_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1410_disparity.npz
635
- NYUv2/test/dining_room_0025/rgb_1411_rgb_left.mp4,NYUv2/test/dining_room_0025/rgb_1411_disparity.npz
636
- NYUv2/test/dining_room_0026/rgb_1412_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1412_disparity.npz
637
- NYUv2/test/dining_room_0026/rgb_1413_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1413_disparity.npz
638
- NYUv2/test/dining_room_0026/rgb_1414_rgb_left.mp4,NYUv2/test/dining_room_0026/rgb_1414_disparity.npz
639
- NYUv2/test/dining_room_0030/rgb_1421_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1421_disparity.npz
640
- NYUv2/test/dining_room_0030/rgb_1422_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1422_disparity.npz
641
- NYUv2/test/dining_room_0030/rgb_1423_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1423_disparity.npz
642
- NYUv2/test/dining_room_0030/rgb_1424_rgb_left.mp4,NYUv2/test/dining_room_0030/rgb_1424_disparity.npz
643
- NYUv2/test/dining_room_0032/rgb_1430_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1430_disparity.npz
644
- NYUv2/test/dining_room_0032/rgb_1431_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1431_disparity.npz
645
- NYUv2/test/dining_room_0032/rgb_1432_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1432_disparity.npz
646
- NYUv2/test/dining_room_0032/rgb_1433_rgb_left.mp4,NYUv2/test/dining_room_0032/rgb_1433_disparity.npz
647
- NYUv2/test/dining_room_0035/rgb_1441_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1441_disparity.npz
648
- NYUv2/test/dining_room_0035/rgb_1442_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1442_disparity.npz
649
- NYUv2/test/dining_room_0035/rgb_1443_rgb_left.mp4,NYUv2/test/dining_room_0035/rgb_1443_disparity.npz
650
- NYUv2/test/dining_room_0036/rgb_1444_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1444_disparity.npz
651
- NYUv2/test/dining_room_0036/rgb_1445_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1445_disparity.npz
652
- NYUv2/test/dining_room_0036/rgb_1446_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1446_disparity.npz
653
- NYUv2/test/dining_room_0036/rgb_1447_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1447_disparity.npz
654
- NYUv2/test/dining_room_0036/rgb_1448_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1448_disparity.npz
655
- NYUv2/test/dining_room_0036/rgb_1449_rgb_left.mp4,NYUv2/test/dining_room_0036/rgb_1449_disparity.npz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/csv/meta_scannet_test.csv DELETED
@@ -1,101 +0,0 @@
1
- filepath_left,filepath_disparity
2
- scannet/scene0707_00_rgb_left.mp4,scannet/scene0707_00_disparity.npz
3
- scannet/scene0708_00_rgb_left.mp4,scannet/scene0708_00_disparity.npz
4
- scannet/scene0709_00_rgb_left.mp4,scannet/scene0709_00_disparity.npz
5
- scannet/scene0710_00_rgb_left.mp4,scannet/scene0710_00_disparity.npz
6
- scannet/scene0711_00_rgb_left.mp4,scannet/scene0711_00_disparity.npz
7
- scannet/scene0712_00_rgb_left.mp4,scannet/scene0712_00_disparity.npz
8
- scannet/scene0713_00_rgb_left.mp4,scannet/scene0713_00_disparity.npz
9
- scannet/scene0714_00_rgb_left.mp4,scannet/scene0714_00_disparity.npz
10
- scannet/scene0715_00_rgb_left.mp4,scannet/scene0715_00_disparity.npz
11
- scannet/scene0716_00_rgb_left.mp4,scannet/scene0716_00_disparity.npz
12
- scannet/scene0717_00_rgb_left.mp4,scannet/scene0717_00_disparity.npz
13
- scannet/scene0718_00_rgb_left.mp4,scannet/scene0718_00_disparity.npz
14
- scannet/scene0719_00_rgb_left.mp4,scannet/scene0719_00_disparity.npz
15
- scannet/scene0720_00_rgb_left.mp4,scannet/scene0720_00_disparity.npz
16
- scannet/scene0721_00_rgb_left.mp4,scannet/scene0721_00_disparity.npz
17
- scannet/scene0722_00_rgb_left.mp4,scannet/scene0722_00_disparity.npz
18
- scannet/scene0723_00_rgb_left.mp4,scannet/scene0723_00_disparity.npz
19
- scannet/scene0724_00_rgb_left.mp4,scannet/scene0724_00_disparity.npz
20
- scannet/scene0725_00_rgb_left.mp4,scannet/scene0725_00_disparity.npz
21
- scannet/scene0726_00_rgb_left.mp4,scannet/scene0726_00_disparity.npz
22
- scannet/scene0727_00_rgb_left.mp4,scannet/scene0727_00_disparity.npz
23
- scannet/scene0728_00_rgb_left.mp4,scannet/scene0728_00_disparity.npz
24
- scannet/scene0729_00_rgb_left.mp4,scannet/scene0729_00_disparity.npz
25
- scannet/scene0730_00_rgb_left.mp4,scannet/scene0730_00_disparity.npz
26
- scannet/scene0731_00_rgb_left.mp4,scannet/scene0731_00_disparity.npz
27
- scannet/scene0732_00_rgb_left.mp4,scannet/scene0732_00_disparity.npz
28
- scannet/scene0733_00_rgb_left.mp4,scannet/scene0733_00_disparity.npz
29
- scannet/scene0734_00_rgb_left.mp4,scannet/scene0734_00_disparity.npz
30
- scannet/scene0735_00_rgb_left.mp4,scannet/scene0735_00_disparity.npz
31
- scannet/scene0736_00_rgb_left.mp4,scannet/scene0736_00_disparity.npz
32
- scannet/scene0737_00_rgb_left.mp4,scannet/scene0737_00_disparity.npz
33
- scannet/scene0738_00_rgb_left.mp4,scannet/scene0738_00_disparity.npz
34
- scannet/scene0739_00_rgb_left.mp4,scannet/scene0739_00_disparity.npz
35
- scannet/scene0740_00_rgb_left.mp4,scannet/scene0740_00_disparity.npz
36
- scannet/scene0741_00_rgb_left.mp4,scannet/scene0741_00_disparity.npz
37
- scannet/scene0742_00_rgb_left.mp4,scannet/scene0742_00_disparity.npz
38
- scannet/scene0743_00_rgb_left.mp4,scannet/scene0743_00_disparity.npz
39
- scannet/scene0744_00_rgb_left.mp4,scannet/scene0744_00_disparity.npz
40
- scannet/scene0745_00_rgb_left.mp4,scannet/scene0745_00_disparity.npz
41
- scannet/scene0746_00_rgb_left.mp4,scannet/scene0746_00_disparity.npz
42
- scannet/scene0747_00_rgb_left.mp4,scannet/scene0747_00_disparity.npz
43
- scannet/scene0748_00_rgb_left.mp4,scannet/scene0748_00_disparity.npz
44
- scannet/scene0749_00_rgb_left.mp4,scannet/scene0749_00_disparity.npz
45
- scannet/scene0750_00_rgb_left.mp4,scannet/scene0750_00_disparity.npz
46
- scannet/scene0751_00_rgb_left.mp4,scannet/scene0751_00_disparity.npz
47
- scannet/scene0752_00_rgb_left.mp4,scannet/scene0752_00_disparity.npz
48
- scannet/scene0753_00_rgb_left.mp4,scannet/scene0753_00_disparity.npz
49
- scannet/scene0754_00_rgb_left.mp4,scannet/scene0754_00_disparity.npz
50
- scannet/scene0755_00_rgb_left.mp4,scannet/scene0755_00_disparity.npz
51
- scannet/scene0756_00_rgb_left.mp4,scannet/scene0756_00_disparity.npz
52
- scannet/scene0757_00_rgb_left.mp4,scannet/scene0757_00_disparity.npz
53
- scannet/scene0758_00_rgb_left.mp4,scannet/scene0758_00_disparity.npz
54
- scannet/scene0759_00_rgb_left.mp4,scannet/scene0759_00_disparity.npz
55
- scannet/scene0760_00_rgb_left.mp4,scannet/scene0760_00_disparity.npz
56
- scannet/scene0761_00_rgb_left.mp4,scannet/scene0761_00_disparity.npz
57
- scannet/scene0762_00_rgb_left.mp4,scannet/scene0762_00_disparity.npz
58
- scannet/scene0763_00_rgb_left.mp4,scannet/scene0763_00_disparity.npz
59
- scannet/scene0764_00_rgb_left.mp4,scannet/scene0764_00_disparity.npz
60
- scannet/scene0765_00_rgb_left.mp4,scannet/scene0765_00_disparity.npz
61
- scannet/scene0766_00_rgb_left.mp4,scannet/scene0766_00_disparity.npz
62
- scannet/scene0767_00_rgb_left.mp4,scannet/scene0767_00_disparity.npz
63
- scannet/scene0768_00_rgb_left.mp4,scannet/scene0768_00_disparity.npz
64
- scannet/scene0769_00_rgb_left.mp4,scannet/scene0769_00_disparity.npz
65
- scannet/scene0770_00_rgb_left.mp4,scannet/scene0770_00_disparity.npz
66
- scannet/scene0771_00_rgb_left.mp4,scannet/scene0771_00_disparity.npz
67
- scannet/scene0772_00_rgb_left.mp4,scannet/scene0772_00_disparity.npz
68
- scannet/scene0773_00_rgb_left.mp4,scannet/scene0773_00_disparity.npz
69
- scannet/scene0774_00_rgb_left.mp4,scannet/scene0774_00_disparity.npz
70
- scannet/scene0775_00_rgb_left.mp4,scannet/scene0775_00_disparity.npz
71
- scannet/scene0776_00_rgb_left.mp4,scannet/scene0776_00_disparity.npz
72
- scannet/scene0777_00_rgb_left.mp4,scannet/scene0777_00_disparity.npz
73
- scannet/scene0778_00_rgb_left.mp4,scannet/scene0778_00_disparity.npz
74
- scannet/scene0779_00_rgb_left.mp4,scannet/scene0779_00_disparity.npz
75
- scannet/scene0780_00_rgb_left.mp4,scannet/scene0780_00_disparity.npz
76
- scannet/scene0781_00_rgb_left.mp4,scannet/scene0781_00_disparity.npz
77
- scannet/scene0782_00_rgb_left.mp4,scannet/scene0782_00_disparity.npz
78
- scannet/scene0783_00_rgb_left.mp4,scannet/scene0783_00_disparity.npz
79
- scannet/scene0784_00_rgb_left.mp4,scannet/scene0784_00_disparity.npz
80
- scannet/scene0785_00_rgb_left.mp4,scannet/scene0785_00_disparity.npz
81
- scannet/scene0786_00_rgb_left.mp4,scannet/scene0786_00_disparity.npz
82
- scannet/scene0787_00_rgb_left.mp4,scannet/scene0787_00_disparity.npz
83
- scannet/scene0788_00_rgb_left.mp4,scannet/scene0788_00_disparity.npz
84
- scannet/scene0789_00_rgb_left.mp4,scannet/scene0789_00_disparity.npz
85
- scannet/scene0790_00_rgb_left.mp4,scannet/scene0790_00_disparity.npz
86
- scannet/scene0791_00_rgb_left.mp4,scannet/scene0791_00_disparity.npz
87
- scannet/scene0792_00_rgb_left.mp4,scannet/scene0792_00_disparity.npz
88
- scannet/scene0793_00_rgb_left.mp4,scannet/scene0793_00_disparity.npz
89
- scannet/scene0794_00_rgb_left.mp4,scannet/scene0794_00_disparity.npz
90
- scannet/scene0795_00_rgb_left.mp4,scannet/scene0795_00_disparity.npz
91
- scannet/scene0796_00_rgb_left.mp4,scannet/scene0796_00_disparity.npz
92
- scannet/scene0797_00_rgb_left.mp4,scannet/scene0797_00_disparity.npz
93
- scannet/scene0798_00_rgb_left.mp4,scannet/scene0798_00_disparity.npz
94
- scannet/scene0799_00_rgb_left.mp4,scannet/scene0799_00_disparity.npz
95
- scannet/scene0800_00_rgb_left.mp4,scannet/scene0800_00_disparity.npz
96
- scannet/scene0801_00_rgb_left.mp4,scannet/scene0801_00_disparity.npz
97
- scannet/scene0802_00_rgb_left.mp4,scannet/scene0802_00_disparity.npz
98
- scannet/scene0803_00_rgb_left.mp4,scannet/scene0803_00_disparity.npz
99
- scannet/scene0804_00_rgb_left.mp4,scannet/scene0804_00_disparity.npz
100
- scannet/scene0805_00_rgb_left.mp4,scannet/scene0805_00_disparity.npz
101
- scannet/scene0806_00_rgb_left.mp4,scannet/scene0806_00_disparity.npz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/csv/meta_sintel.csv DELETED
@@ -1,24 +0,0 @@
1
- filepath_left,filepath_disparity
2
- sintel/ambush_5_rgb_left.mp4,sintel/ambush_5_disparity.npz
3
- sintel/bamboo_2_rgb_left.mp4,sintel/bamboo_2_disparity.npz
4
- sintel/mountain_1_rgb_left.mp4,sintel/mountain_1_disparity.npz
5
- sintel/bamboo_1_rgb_left.mp4,sintel/bamboo_1_disparity.npz
6
- sintel/shaman_2_rgb_left.mp4,sintel/shaman_2_disparity.npz
7
- sintel/ambush_6_rgb_left.mp4,sintel/ambush_6_disparity.npz
8
- sintel/bandage_1_rgb_left.mp4,sintel/bandage_1_disparity.npz
9
- sintel/alley_1_rgb_left.mp4,sintel/alley_1_disparity.npz
10
- sintel/temple_3_rgb_left.mp4,sintel/temple_3_disparity.npz
11
- sintel/shaman_3_rgb_left.mp4,sintel/shaman_3_disparity.npz
12
- sintel/ambush_2_rgb_left.mp4,sintel/ambush_2_disparity.npz
13
- sintel/cave_4_rgb_left.mp4,sintel/cave_4_disparity.npz
14
- sintel/cave_2_rgb_left.mp4,sintel/cave_2_disparity.npz
15
- sintel/alley_2_rgb_left.mp4,sintel/alley_2_disparity.npz
16
- sintel/market_5_rgb_left.mp4,sintel/market_5_disparity.npz
17
- sintel/sleeping_2_rgb_left.mp4,sintel/sleeping_2_disparity.npz
18
- sintel/ambush_4_rgb_left.mp4,sintel/ambush_4_disparity.npz
19
- sintel/sleeping_1_rgb_left.mp4,sintel/sleeping_1_disparity.npz
20
- sintel/market_6_rgb_left.mp4,sintel/market_6_disparity.npz
21
- sintel/market_2_rgb_left.mp4,sintel/market_2_disparity.npz
22
- sintel/bandage_2_rgb_left.mp4,sintel/bandage_2_disparity.npz
23
- sintel/ambush_7_rgb_left.mp4,sintel/ambush_7_disparity.npz
24
- sintel/temple_2_rgb_left.mp4,sintel/temple_2_disparity.npz
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract/dataset_extract_bonn.py DELETED
@@ -1,155 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import imageio
7
- import csv
8
-
9
-
10
- def depth_read(filename):
11
- # loads depth map D from png file
12
- # and returns it as a numpy array
13
-
14
- depth_png = np.asarray(Image.open(filename))
15
- # make sure we have a proper 16bit depth map here.. not 8bit!
16
- assert np.max(depth_png) > 255
17
-
18
- depth = depth_png.astype(np.float64) / 5000.0
19
- depth[depth_png == 0] = -1.0
20
- return depth
21
-
22
-
23
- def extract_bonn(
24
- root,
25
- depth_root,
26
- sample_len=-1,
27
- csv_save_path="",
28
- datatset_name="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- start_frame=0,
32
- end_frame=110,
33
- ):
34
- scenes_names = os.listdir(depth_root)
35
- all_samples = []
36
- for i, seq_name in enumerate(tqdm(scenes_names)):
37
- # load all images
38
- all_img_names = os.listdir(osp.join(depth_root, seq_name, "rgb"))
39
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
40
- print(f"sequence frame number: {len(all_img_names)}")
41
-
42
- # for not zero padding image name
43
- all_img_names.sort()
44
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
- all_img_names = all_img_names[start_frame:end_frame]
46
-
47
- all_depth_names = os.listdir(osp.join(depth_root, seq_name, "depth"))
48
- all_depth_names = [x for x in all_depth_names if x.endswith(".png")]
49
- print(f"sequence depth number: {len(all_depth_names)}")
50
-
51
- # for not zero padding image name
52
- all_depth_names.sort()
53
- all_depth_names = sorted(
54
- all_depth_names, key=lambda x: int(x.split(".")[0][-4:])
55
- )
56
- all_depth_names = all_depth_names[start_frame:end_frame]
57
-
58
- seq_len = len(all_img_names)
59
- step = sample_len if sample_len > 0 else seq_len
60
-
61
- for ref_idx in range(0, seq_len, step):
62
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
63
-
64
- video_imgs = []
65
- video_depths = []
66
-
67
- if (ref_idx + step) <= seq_len:
68
- ref_e = ref_idx + step
69
- else:
70
- continue
71
-
72
- # for idx in range(ref_idx, ref_idx + step):
73
- for idx in range(ref_idx, ref_e):
74
- im_path = osp.join(root, seq_name, "rgb", all_img_names[idx])
75
- depth_path = osp.join(
76
- depth_root, seq_name, "depth", all_depth_names[idx]
77
- )
78
-
79
- depth = depth_read(depth_path)
80
- disp = depth
81
-
82
- video_depths.append(disp)
83
- video_imgs.append(np.array(Image.open(im_path)))
84
-
85
- disp_video = np.array(video_depths)[:, None] # [:, 0:1, :, :, 0]
86
- img_video = np.array(video_imgs)[..., 0:3] # [:, 0, :, :, 0:3]
87
-
88
- print(disp_video.max(), disp_video.min())
89
-
90
- def even_or_odd(num):
91
- if num % 2 == 0:
92
- return num
93
- else:
94
- return num - 1
95
-
96
- # print(disp_video.shape)
97
- # print(img_video.shape)
98
- height = disp_video.shape[-2]
99
- width = disp_video.shape[-1]
100
- height = even_or_odd(height)
101
- width = even_or_odd(width)
102
- disp_video = disp_video[:, :, 0:height, 0:width]
103
- img_video = img_video[:, 0:height, 0:width]
104
-
105
- data_root = saved_rgb_dir + datatset_name
106
- disp_root = saved_disp_dir + datatset_name
107
- os.makedirs(data_root, exist_ok=True)
108
- os.makedirs(disp_root, exist_ok=True)
109
-
110
- img_video_dir = data_root
111
- disp_video_dir = disp_root
112
-
113
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
114
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
115
-
116
- imageio.mimsave(
117
- img_video_path, img_video, fps=15, quality=9, macro_block_size=1
118
- )
119
- np.savez(disp_video_path, disparity=disp_video)
120
-
121
- sample = {}
122
- sample["filepath_left"] = os.path.join(
123
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
124
- ) # img_video_path
125
- sample["filepath_disparity"] = os.path.join(
126
- f"{datatset_name}/{seq_name}_disparity.npz"
127
- ) # disp_video_path
128
-
129
- all_samples.append(sample)
130
-
131
- # save csv file
132
-
133
- filename_ = csv_save_path
134
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
135
- fields = ["filepath_left", "filepath_disparity"]
136
- with open(filename_, "w") as csvfile:
137
- writer = csv.DictWriter(csvfile, fieldnames=fields)
138
- writer.writeheader()
139
- writer.writerows(all_samples)
140
-
141
- print(f"{filename_} has been saved.")
142
-
143
-
144
- if __name__ == "__main__":
145
- extract_bonn(
146
- root="path/to/Bonn-RGBD",
147
- depth_root="path/to/Bonn-RGBD",
148
- saved_rgb_dir="./benchmark/datasets/",
149
- saved_disp_dir="./benchmark/datasets/",
150
- csv_save_path=f"./benchmark/datasets/bonn.csv",
151
- sample_len=-1,
152
- datatset_name="bonn",
153
- start_frame=30,
154
- end_frame=140,
155
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract/dataset_extract_kitti.py DELETED
@@ -1,140 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def depth_read(filename):
11
- # loads depth map D from png file
12
- # and returns it as a numpy array,
13
-
14
- depth_png = np.array(Image.open(filename), dtype=int)
15
- # make sure we have a proper 16bit depth map here.. not 8bit!
16
- assert np.max(depth_png) > 255
17
-
18
- depth = depth_png.astype(np.float64) / 256.0
19
- depth[depth_png == 0] = -1.0
20
- return depth
21
-
22
-
23
- def extract_kitti(
24
- root,
25
- depth_root,
26
- sample_len=-1,
27
- csv_save_path="",
28
- datatset_name="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- start_frame=0,
32
- end_frame=110,
33
- ):
34
- scenes_names = os.listdir(depth_root)
35
- all_samples = []
36
- for i, seq_name in enumerate(tqdm(scenes_names)):
37
- all_img_names = os.listdir(
38
- osp.join(depth_root, seq_name, "proj_depth/groundtruth/image_02")
39
- )
40
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
41
- print(f"sequence frame number: {len(all_img_names)}")
42
-
43
- all_img_names.sort()
44
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
- all_img_names = all_img_names[start_frame:end_frame]
46
-
47
- seq_len = len(all_img_names)
48
- step = sample_len if sample_len > 0 else seq_len
49
-
50
- for ref_idx in range(0, seq_len, step):
51
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
52
-
53
- video_imgs = []
54
- video_depths = []
55
-
56
- if (ref_idx + step) <= seq_len:
57
- ref_e = ref_idx + step
58
- else:
59
- continue
60
-
61
- for idx in range(ref_idx, ref_e):
62
- im_path = osp.join(
63
- root, seq_name[0:10], seq_name, "image_02/data", all_img_names[idx]
64
- )
65
- depth_path = osp.join(
66
- depth_root,
67
- seq_name,
68
- "proj_depth/groundtruth/image_02",
69
- all_img_names[idx],
70
- )
71
-
72
- depth = depth_read(depth_path)
73
- disp = depth
74
-
75
- video_depths.append(disp)
76
- video_imgs.append(np.array(Image.open(im_path)))
77
-
78
- disp_video = np.array(video_depths)[:, None]
79
- img_video = np.array(video_imgs)[..., 0:3]
80
-
81
- def even_or_odd(num):
82
- if num % 2 == 0:
83
- return num
84
- else:
85
- return num - 1
86
-
87
- height = disp_video.shape[-2]
88
- width = disp_video.shape[-1]
89
- height = even_or_odd(height)
90
- width = even_or_odd(width)
91
- disp_video = disp_video[:, :, 0:height, 0:width]
92
- img_video = img_video[:, 0:height, 0:width]
93
-
94
- data_root = saved_rgb_dir + datatset_name
95
- disp_root = saved_disp_dir + datatset_name
96
- os.makedirs(data_root, exist_ok=True)
97
- os.makedirs(disp_root, exist_ok=True)
98
-
99
- img_video_dir = data_root
100
- disp_video_dir = disp_root
101
-
102
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
103
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
104
-
105
- imageio.mimsave(
106
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
107
- )
108
- np.savez(disp_video_path, disparity=disp_video)
109
-
110
- sample = {}
111
- sample["filepath_left"] = os.path.join(f"KITTI/{seq_name}_rgb_left.mp4")
112
- sample["filepath_disparity"] = os.path.join(
113
- f"KITTI/{seq_name}_disparity.npz"
114
- )
115
-
116
- all_samples.append(sample)
117
-
118
- filename_ = csv_save_path
119
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
120
- fields = ["filepath_left", "filepath_disparity"]
121
- with open(filename_, "w") as csvfile:
122
- writer = csv.DictWriter(csvfile, fieldnames=fields)
123
- writer.writeheader()
124
- writer.writerows(all_samples)
125
-
126
- print(f"{filename_} has been saved.")
127
-
128
-
129
- if __name__ == "__main__":
130
- extract_kitti(
131
- root="path/to/KITTI/raw_data",
132
- depth_root="path/to/KITTI/data_depth_annotated/val",
133
- saved_rgb_dir="./benchmark/datasets/",
134
- saved_disp_dir="./benchmark/datasets/",
135
- csv_save_path=f"./benchmark/datasets/KITTI.csv",
136
- sample_len=-1,
137
- datatset_name="KITTI",
138
- start_frame=0,
139
- end_frame=110,
140
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract/dataset_extract_nyu.py DELETED
@@ -1,106 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def _read_image(img_rel_path) -> np.ndarray:
11
- image_to_read = img_rel_path
12
- image = Image.open(image_to_read)
13
- image = np.asarray(image)
14
- return image
15
-
16
-
17
- def depth_read(filename):
18
- depth_in = _read_image(filename)
19
- depth_decoded = depth_in / 1000.0
20
- return depth_decoded
21
-
22
-
23
- def extract_nyu(
24
- root,
25
- depth_root,
26
- csv_save_path="",
27
- datatset_name="",
28
- filename_ls_path="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- ):
32
- with open(filename_ls_path, "r") as f:
33
- filenames = [s.split() for s in f.readlines()]
34
-
35
- all_samples = []
36
- for i, pair_names in enumerate(tqdm(filenames)):
37
- img_name = pair_names[0]
38
- filled_depth_name = pair_names[2]
39
-
40
- im_path = osp.join(root, img_name)
41
- depth_path = osp.join(depth_root, filled_depth_name)
42
-
43
- depth = depth_read(depth_path)
44
- disp = depth
45
-
46
- video_depths = [disp]
47
- video_imgs = [np.array(Image.open(im_path))]
48
-
49
- disp_video = np.array(video_depths)[:, None]
50
- img_video = np.array(video_imgs)[..., 0:3]
51
-
52
- disp_video = disp_video[:, :, 45:471, 41:601]
53
- img_video = img_video[:, 45:471, 41:601, :]
54
-
55
- data_root = saved_rgb_dir + datatset_name
56
- disp_root = saved_disp_dir + datatset_name
57
- os.makedirs(data_root, exist_ok=True)
58
- os.makedirs(disp_root, exist_ok=True)
59
-
60
- img_video_dir = data_root
61
- disp_video_dir = disp_root
62
-
63
- img_video_path = os.path.join(img_video_dir, f"{img_name[:-4]}_rgb_left.mp4")
64
- disp_video_path = os.path.join(disp_video_dir, f"{img_name[:-4]}_disparity.npz")
65
-
66
- dir_name = os.path.dirname(img_video_path)
67
- os.makedirs(dir_name, exist_ok=True)
68
- dir_name = os.path.dirname(disp_video_path)
69
- os.makedirs(dir_name, exist_ok=True)
70
-
71
- imageio.mimsave(
72
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
73
- )
74
- np.savez(disp_video_path, disparity=disp_video)
75
-
76
- sample = {}
77
- sample["filepath_left"] = os.path.join(
78
- f"{datatset_name}/{img_name[:-4]}_rgb_left.mp4"
79
- )
80
- sample["filepath_disparity"] = os.path.join(
81
- f"{datatset_name}/{img_name[:-4]}_disparity.npz"
82
- )
83
-
84
- all_samples.append(sample)
85
-
86
- filename_ = csv_save_path
87
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
88
- fields = ["filepath_left", "filepath_disparity"]
89
- with open(filename_, "w") as csvfile:
90
- writer = csv.DictWriter(csvfile, fieldnames=fields)
91
- writer.writeheader()
92
- writer.writerows(all_samples)
93
-
94
- print(f"{filename_} has been saved.")
95
-
96
-
97
- if __name__ == "__main__":
98
- extract_nyu(
99
- root="path/to/NYUv2/",
100
- depth_root="path/to/NYUv2/",
101
- filename_ls_path="path/to/NYUv2/filename_list_test.txt",
102
- saved_rgb_dir="./benchmark/datasets/",
103
- saved_disp_dir="./benchmark/datasets/",
104
- csv_save_path=f"./benchmark/datasets/NYUv2.csv",
105
- datatset_name="NYUv2",
106
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract/dataset_extract_scannet.py DELETED
@@ -1,124 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def _read_image(img_rel_path) -> np.ndarray:
11
- image_to_read = img_rel_path
12
- image = Image.open(image_to_read) # [H, W, rgb]
13
- image = np.asarray(image)
14
- return image
15
-
16
-
17
- def depth_read(filename):
18
- depth_in = _read_image(filename)
19
- depth_decoded = depth_in / 1000.0
20
- return depth_decoded
21
-
22
-
23
- def extract_scannet(
24
- root,
25
- sample_len=-1,
26
- csv_save_path="",
27
- datatset_name="",
28
- scene_number=16,
29
- scene_frames_len=120,
30
- stride=1,
31
- saved_rgb_dir="",
32
- saved_disp_dir="",
33
- ):
34
- scenes_names = os.listdir(root)
35
- scenes_names = sorted(scenes_names)[:scene_number]
36
- all_samples = []
37
- for i, seq_name in enumerate(tqdm(scenes_names)):
38
- all_img_names = os.listdir(osp.join(root, seq_name, "color"))
39
- all_img_names = [x for x in all_img_names if x.endswith(".jpg")]
40
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0]))
41
- all_img_names = all_img_names[:scene_frames_len:stride]
42
- print(f"sequence frame number: {len(all_img_names)}")
43
-
44
- seq_len = len(all_img_names)
45
- step = sample_len if sample_len > 0 else seq_len
46
-
47
- for ref_idx in range(0, seq_len, step):
48
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
49
-
50
- video_imgs = []
51
- video_depths = []
52
-
53
- if (ref_idx + step) <= seq_len:
54
- ref_e = ref_idx + step
55
- else:
56
- continue
57
-
58
- for idx in range(ref_idx, ref_e):
59
- im_path = osp.join(root, seq_name, "color", all_img_names[idx])
60
- depth_path = osp.join(
61
- root, seq_name, "depth", all_img_names[idx][:-3] + "png"
62
- )
63
-
64
- depth = depth_read(depth_path)
65
- disp = depth
66
-
67
- video_depths.append(disp)
68
- video_imgs.append(np.array(Image.open(im_path)))
69
-
70
- disp_video = np.array(video_depths)[:, None]
71
- img_video = np.array(video_imgs)[..., 0:3]
72
-
73
- disp_video = disp_video[:, :, 8:-8, 11:-11]
74
- img_video = img_video[:, 8:-8, 11:-11, :]
75
-
76
- data_root = saved_rgb_dir + datatset_name
77
- disp_root = saved_disp_dir + datatset_name
78
- os.makedirs(data_root, exist_ok=True)
79
- os.makedirs(disp_root, exist_ok=True)
80
-
81
- img_video_dir = data_root
82
- disp_video_dir = disp_root
83
-
84
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
85
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
86
-
87
- imageio.mimsave(
88
- img_video_path, img_video, fps=15, quality=9, macro_block_size=1
89
- )
90
- np.savez(disp_video_path, disparity=disp_video)
91
-
92
- sample = {}
93
- sample["filepath_left"] = os.path.join(
94
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
95
- )
96
- sample["filepath_disparity"] = os.path.join(
97
- f"{datatset_name}/{seq_name}_disparity.npz"
98
- )
99
-
100
- all_samples.append(sample)
101
-
102
- filename_ = csv_save_path
103
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
104
- fields = ["filepath_left", "filepath_disparity"]
105
- with open(filename_, "w") as csvfile:
106
- writer = csv.DictWriter(csvfile, fieldnames=fields)
107
- writer.writeheader()
108
- writer.writerows(all_samples)
109
-
110
- print(f"{filename_} has been saved.")
111
-
112
-
113
- if __name__ == "__main__":
114
- extract_scannet(
115
- root="path/to/ScanNet_v2/raw/scans_test",
116
- saved_rgb_dir="./benchmark/datasets/",
117
- saved_disp_dir="./benchmark/datasets/",
118
- csv_save_path=f"./benchmark/datasets/scannet.csv",
119
- sample_len=-1,
120
- datatset_name="scannet",
121
- scene_number=100,
122
- scene_frames_len=90 * 3,
123
- stride=3,
124
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract/dataset_extract_sintel.py DELETED
@@ -1,137 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
-
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
- # # Data loading based on https://github.com/NVIDIA/flownet2-pytorch
7
-
8
-
9
- import os
10
- import numpy as np
11
- import os.path as osp
12
- from PIL import Image
13
- from tqdm import tqdm
14
- import csv
15
- import imageio
16
-
17
-
18
- # Check for endianness, based on Daniel Scharstein's optical flow code.
19
- # Using little-endian architecture, these two should be equal.
20
- TAG_FLOAT = 202021.25
21
- TAG_CHAR = "PIEH"
22
-
23
-
24
- def depth_read(filename):
25
- """Read depth data from file, return as numpy array."""
26
- f = open(filename, "rb")
27
- check = np.fromfile(f, dtype=np.float32, count=1)[0]
28
- assert (
29
- check == TAG_FLOAT
30
- ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
31
- TAG_FLOAT, check
32
- )
33
- width = np.fromfile(f, dtype=np.int32, count=1)[0]
34
- height = np.fromfile(f, dtype=np.int32, count=1)[0]
35
- size = width * height
36
- assert (
37
- width > 0 and height > 0 and size > 1 and size < 100000000
38
- ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
39
- width, height
40
- )
41
- depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
42
- return depth
43
-
44
-
45
- def extract_sintel(
46
- root,
47
- depth_root,
48
- sample_len=-1,
49
- csv_save_path="",
50
- datatset_name="",
51
- saved_rgb_dir="",
52
- saved_disp_dir="",
53
- ):
54
- scenes_names = os.listdir(root)
55
- all_samples = []
56
- for i, seq_name in enumerate(tqdm(scenes_names)):
57
- all_img_names = os.listdir(os.path.join(root, seq_name))
58
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
59
- all_img_names.sort()
60
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
61
-
62
- seq_len = len(all_img_names)
63
- step = sample_len if sample_len > 0 else seq_len
64
-
65
- for ref_idx in range(0, seq_len, step):
66
- print(f"Progress: {seq_name}, {ref_idx // step} / {seq_len // step}")
67
-
68
- video_imgs = []
69
- video_depths = []
70
-
71
- if (ref_idx + step) <= seq_len:
72
- ref_e = ref_idx + step
73
- else:
74
- continue
75
-
76
- for idx in range(ref_idx, ref_e):
77
- im_path = osp.join(root, seq_name, all_img_names[idx])
78
- depth_path = osp.join(
79
- depth_root, seq_name, all_img_names[idx][:-3] + "dpt"
80
- )
81
-
82
- depth = depth_read(depth_path)
83
- disp = depth
84
-
85
- video_depths.append(disp)
86
- video_imgs.append(np.array(Image.open(im_path)))
87
-
88
- disp_video = np.array(video_depths)[:, None]
89
- img_video = np.array(video_imgs)[..., 0:3]
90
-
91
- data_root = saved_rgb_dir + datatset_name
92
- disp_root = saved_disp_dir + datatset_name
93
- os.makedirs(data_root, exist_ok=True)
94
- os.makedirs(disp_root, exist_ok=True)
95
-
96
- img_video_dir = data_root
97
- disp_video_dir = disp_root
98
-
99
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
100
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
101
-
102
- imageio.mimsave(
103
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
104
- )
105
- np.savez(disp_video_path, disparity=disp_video)
106
-
107
- sample = {}
108
- sample["filepath_left"] = os.path.join(
109
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
110
- )
111
- sample["filepath_disparity"] = os.path.join(
112
- f"{datatset_name}/{seq_name}_disparity.npz"
113
- )
114
-
115
- all_samples.append(sample)
116
-
117
- filename_ = csv_save_path
118
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
119
- fields = ["filepath_left", "filepath_disparity"]
120
- with open(filename_, "w") as csvfile:
121
- writer = csv.DictWriter(csvfile, fieldnames=fields)
122
- writer.writeheader()
123
- writer.writerows(all_samples)
124
-
125
- print(f"{filename_} has been saved.")
126
-
127
-
128
- if __name__ == "__main__":
129
- extract_sintel(
130
- root="path/to/Sintel-Depth/training_image/clean",
131
- depth_root="path/to/Sintel-Depth/MPI-Sintel-depth-training-20150305/training/depth",
132
- saved_rgb_dir="./benchmark/datasets/",
133
- saved_disp_dir="./benchmark/datasets/",
134
- csv_save_path=f"./benchmark/datasets/sintel.csv",
135
- sample_len=-1,
136
- datatset_name="sintel",
137
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract_bonn.py DELETED
@@ -1,155 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import imageio
7
- import csv
8
-
9
-
10
- def depth_read(filename):
11
- # loads depth map D from png file
12
- # and returns it as a numpy array
13
-
14
- depth_png = np.asarray(Image.open(filename))
15
- # make sure we have a proper 16bit depth map here.. not 8bit!
16
- assert np.max(depth_png) > 255
17
-
18
- depth = depth_png.astype(np.float64) / 5000.0
19
- depth[depth_png == 0] = -1.0
20
- return depth
21
-
22
-
23
- def extract_bonn(
24
- root,
25
- depth_root,
26
- sample_len=-1,
27
- csv_save_path="",
28
- datatset_name="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- start_frame=0,
32
- end_frame=110,
33
- ):
34
- scenes_names = os.listdir(depth_root)
35
- all_samples = []
36
- for i, seq_name in enumerate(tqdm(scenes_names)):
37
- # load all images
38
- all_img_names = os.listdir(osp.join(depth_root, seq_name, "rgb"))
39
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
40
- print(f"sequence frame number: {len(all_img_names)}")
41
-
42
- # for not zero padding image name
43
- all_img_names.sort()
44
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
- all_img_names = all_img_names[start_frame:end_frame]
46
-
47
- all_depth_names = os.listdir(osp.join(depth_root, seq_name, "depth"))
48
- all_depth_names = [x for x in all_depth_names if x.endswith(".png")]
49
- print(f"sequence depth number: {len(all_depth_names)}")
50
-
51
- # for not zero padding image name
52
- all_depth_names.sort()
53
- all_depth_names = sorted(
54
- all_depth_names, key=lambda x: int(x.split(".")[0][-4:])
55
- )
56
- all_depth_names = all_depth_names[start_frame:end_frame]
57
-
58
- seq_len = len(all_img_names)
59
- step = sample_len if sample_len > 0 else seq_len
60
-
61
- for ref_idx in range(0, seq_len, step):
62
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
63
-
64
- video_imgs = []
65
- video_depths = []
66
-
67
- if (ref_idx + step) <= seq_len:
68
- ref_e = ref_idx + step
69
- else:
70
- continue
71
-
72
- # for idx in range(ref_idx, ref_idx + step):
73
- for idx in range(ref_idx, ref_e):
74
- im_path = osp.join(root, seq_name, "rgb", all_img_names[idx])
75
- depth_path = osp.join(
76
- depth_root, seq_name, "depth", all_depth_names[idx]
77
- )
78
-
79
- depth = depth_read(depth_path)
80
- disp = depth
81
-
82
- video_depths.append(disp)
83
- video_imgs.append(np.array(Image.open(im_path)))
84
-
85
- disp_video = np.array(video_depths)[:, None] # [:, 0:1, :, :, 0]
86
- img_video = np.array(video_imgs)[..., 0:3] # [:, 0, :, :, 0:3]
87
-
88
- print(disp_video.max(), disp_video.min())
89
-
90
- def even_or_odd(num):
91
- if num % 2 == 0:
92
- return num
93
- else:
94
- return num - 1
95
-
96
- # print(disp_video.shape)
97
- # print(img_video.shape)
98
- height = disp_video.shape[-2]
99
- width = disp_video.shape[-1]
100
- height = even_or_odd(height)
101
- width = even_or_odd(width)
102
- disp_video = disp_video[:, :, 0:height, 0:width]
103
- img_video = img_video[:, 0:height, 0:width]
104
-
105
- data_root = saved_rgb_dir + datatset_name
106
- disp_root = saved_disp_dir + datatset_name
107
- os.makedirs(data_root, exist_ok=True)
108
- os.makedirs(disp_root, exist_ok=True)
109
-
110
- img_video_dir = data_root
111
- disp_video_dir = disp_root
112
-
113
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
114
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
115
-
116
- imageio.mimsave(
117
- img_video_path, img_video, fps=15, quality=9, macro_block_size=1
118
- )
119
- np.savez(disp_video_path, disparity=disp_video)
120
-
121
- sample = {}
122
- sample["filepath_left"] = os.path.join(
123
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
124
- ) # img_video_path
125
- sample["filepath_disparity"] = os.path.join(
126
- f"{datatset_name}/{seq_name}_disparity.npz"
127
- ) # disp_video_path
128
-
129
- all_samples.append(sample)
130
-
131
- # save csv file
132
-
133
- filename_ = csv_save_path
134
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
135
- fields = ["filepath_left", "filepath_disparity"]
136
- with open(filename_, "w") as csvfile:
137
- writer = csv.DictWriter(csvfile, fieldnames=fields)
138
- writer.writeheader()
139
- writer.writerows(all_samples)
140
-
141
- print(f"{filename_} has been saved.")
142
-
143
-
144
- if __name__ == "__main__":
145
- extract_bonn(
146
- root="path/to/Bonn-RGBD",
147
- depth_root="path/to/Bonn-RGBD",
148
- saved_rgb_dir="./benchmark/datasets/",
149
- saved_disp_dir="./benchmark/datasets/",
150
- csv_save_path=f"./benchmark/datasets/bonn.csv",
151
- sample_len=-1,
152
- datatset_name="bonn",
153
- start_frame=30,
154
- end_frame=140,
155
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract_kitti.py DELETED
@@ -1,140 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def depth_read(filename):
11
- # loads depth map D from png file
12
- # and returns it as a numpy array,
13
-
14
- depth_png = np.array(Image.open(filename), dtype=int)
15
- # make sure we have a proper 16bit depth map here.. not 8bit!
16
- assert np.max(depth_png) > 255
17
-
18
- depth = depth_png.astype(np.float64) / 256.0
19
- depth[depth_png == 0] = -1.0
20
- return depth
21
-
22
-
23
- def extract_kitti(
24
- root,
25
- depth_root,
26
- sample_len=-1,
27
- csv_save_path="",
28
- datatset_name="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- start_frame=0,
32
- end_frame=110,
33
- ):
34
- scenes_names = os.listdir(depth_root)
35
- all_samples = []
36
- for i, seq_name in enumerate(tqdm(scenes_names)):
37
- all_img_names = os.listdir(
38
- osp.join(depth_root, seq_name, "proj_depth/groundtruth/image_02")
39
- )
40
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
41
- print(f"sequence frame number: {len(all_img_names)}")
42
-
43
- all_img_names.sort()
44
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
45
- all_img_names = all_img_names[start_frame:end_frame]
46
-
47
- seq_len = len(all_img_names)
48
- step = sample_len if sample_len > 0 else seq_len
49
-
50
- for ref_idx in range(0, seq_len, step):
51
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
52
-
53
- video_imgs = []
54
- video_depths = []
55
-
56
- if (ref_idx + step) <= seq_len:
57
- ref_e = ref_idx + step
58
- else:
59
- continue
60
-
61
- for idx in range(ref_idx, ref_e):
62
- im_path = osp.join(
63
- root, seq_name[0:10], seq_name, "image_02/data", all_img_names[idx]
64
- )
65
- depth_path = osp.join(
66
- depth_root,
67
- seq_name,
68
- "proj_depth/groundtruth/image_02",
69
- all_img_names[idx],
70
- )
71
-
72
- depth = depth_read(depth_path)
73
- disp = depth
74
-
75
- video_depths.append(disp)
76
- video_imgs.append(np.array(Image.open(im_path)))
77
-
78
- disp_video = np.array(video_depths)[:, None]
79
- img_video = np.array(video_imgs)[..., 0:3]
80
-
81
- def even_or_odd(num):
82
- if num % 2 == 0:
83
- return num
84
- else:
85
- return num - 1
86
-
87
- height = disp_video.shape[-2]
88
- width = disp_video.shape[-1]
89
- height = even_or_odd(height)
90
- width = even_or_odd(width)
91
- disp_video = disp_video[:, :, 0:height, 0:width]
92
- img_video = img_video[:, 0:height, 0:width]
93
-
94
- data_root = saved_rgb_dir + datatset_name
95
- disp_root = saved_disp_dir + datatset_name
96
- os.makedirs(data_root, exist_ok=True)
97
- os.makedirs(disp_root, exist_ok=True)
98
-
99
- img_video_dir = data_root
100
- disp_video_dir = disp_root
101
-
102
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
103
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
104
-
105
- imageio.mimsave(
106
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
107
- )
108
- np.savez(disp_video_path, disparity=disp_video)
109
-
110
- sample = {}
111
- sample["filepath_left"] = os.path.join(f"KITTI/{seq_name}_rgb_left.mp4")
112
- sample["filepath_disparity"] = os.path.join(
113
- f"KITTI/{seq_name}_disparity.npz"
114
- )
115
-
116
- all_samples.append(sample)
117
-
118
- filename_ = csv_save_path
119
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
120
- fields = ["filepath_left", "filepath_disparity"]
121
- with open(filename_, "w") as csvfile:
122
- writer = csv.DictWriter(csvfile, fieldnames=fields)
123
- writer.writeheader()
124
- writer.writerows(all_samples)
125
-
126
- print(f"{filename_} has been saved.")
127
-
128
-
129
- if __name__ == "__main__":
130
- extract_kitti(
131
- root="path/to/KITTI/raw_data",
132
- depth_root="path/to/KITTI/data_depth_annotated/val",
133
- saved_rgb_dir="./benchmark/datasets/",
134
- saved_disp_dir="./benchmark/datasets/",
135
- csv_save_path=f"./benchmark/datasets/KITTI.csv",
136
- sample_len=-1,
137
- datatset_name="KITTI",
138
- start_frame=0,
139
- end_frame=110,
140
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract_nyu.py DELETED
@@ -1,106 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def _read_image(img_rel_path) -> np.ndarray:
11
- image_to_read = img_rel_path
12
- image = Image.open(image_to_read)
13
- image = np.asarray(image)
14
- return image
15
-
16
-
17
- def depth_read(filename):
18
- depth_in = _read_image(filename)
19
- depth_decoded = depth_in / 1000.0
20
- return depth_decoded
21
-
22
-
23
- def extract_nyu(
24
- root,
25
- depth_root,
26
- csv_save_path="",
27
- datatset_name="",
28
- filename_ls_path="",
29
- saved_rgb_dir="",
30
- saved_disp_dir="",
31
- ):
32
- with open(filename_ls_path, "r") as f:
33
- filenames = [s.split() for s in f.readlines()]
34
-
35
- all_samples = []
36
- for i, pair_names in enumerate(tqdm(filenames)):
37
- img_name = pair_names[0]
38
- filled_depth_name = pair_names[2]
39
-
40
- im_path = osp.join(root, img_name)
41
- depth_path = osp.join(depth_root, filled_depth_name)
42
-
43
- depth = depth_read(depth_path)
44
- disp = depth
45
-
46
- video_depths = [disp]
47
- video_imgs = [np.array(Image.open(im_path))]
48
-
49
- disp_video = np.array(video_depths)[:, None]
50
- img_video = np.array(video_imgs)[..., 0:3]
51
-
52
- disp_video = disp_video[:, :, 45:471, 41:601]
53
- img_video = img_video[:, 45:471, 41:601, :]
54
-
55
- data_root = saved_rgb_dir + datatset_name
56
- disp_root = saved_disp_dir + datatset_name
57
- os.makedirs(data_root, exist_ok=True)
58
- os.makedirs(disp_root, exist_ok=True)
59
-
60
- img_video_dir = data_root
61
- disp_video_dir = disp_root
62
-
63
- img_video_path = os.path.join(img_video_dir, f"{img_name[:-4]}_rgb_left.mp4")
64
- disp_video_path = os.path.join(disp_video_dir, f"{img_name[:-4]}_disparity.npz")
65
-
66
- dir_name = os.path.dirname(img_video_path)
67
- os.makedirs(dir_name, exist_ok=True)
68
- dir_name = os.path.dirname(disp_video_path)
69
- os.makedirs(dir_name, exist_ok=True)
70
-
71
- imageio.mimsave(
72
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
73
- )
74
- np.savez(disp_video_path, disparity=disp_video)
75
-
76
- sample = {}
77
- sample["filepath_left"] = os.path.join(
78
- f"{datatset_name}/{img_name[:-4]}_rgb_left.mp4"
79
- )
80
- sample["filepath_disparity"] = os.path.join(
81
- f"{datatset_name}/{img_name[:-4]}_disparity.npz"
82
- )
83
-
84
- all_samples.append(sample)
85
-
86
- filename_ = csv_save_path
87
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
88
- fields = ["filepath_left", "filepath_disparity"]
89
- with open(filename_, "w") as csvfile:
90
- writer = csv.DictWriter(csvfile, fieldnames=fields)
91
- writer.writeheader()
92
- writer.writerows(all_samples)
93
-
94
- print(f"{filename_} has been saved.")
95
-
96
-
97
- if __name__ == "__main__":
98
- extract_nyu(
99
- root="path/to/NYUv2/",
100
- depth_root="path/to/NYUv2/",
101
- filename_ls_path="path/to/NYUv2/filename_list_test.txt",
102
- saved_rgb_dir="./benchmark/datasets/",
103
- saved_disp_dir="./benchmark/datasets/",
104
- csv_save_path=f"./benchmark/datasets/NYUv2.csv",
105
- datatset_name="NYUv2",
106
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract_scannet.py DELETED
@@ -1,124 +0,0 @@
1
- import os
2
- import numpy as np
3
- import os.path as osp
4
- from PIL import Image
5
- from tqdm import tqdm
6
- import csv
7
- import imageio
8
-
9
-
10
- def _read_image(img_rel_path) -> np.ndarray:
11
- image_to_read = img_rel_path
12
- image = Image.open(image_to_read) # [H, W, rgb]
13
- image = np.asarray(image)
14
- return image
15
-
16
-
17
- def depth_read(filename):
18
- depth_in = _read_image(filename)
19
- depth_decoded = depth_in / 1000.0
20
- return depth_decoded
21
-
22
-
23
- def extract_scannet(
24
- root,
25
- sample_len=-1,
26
- csv_save_path="",
27
- datatset_name="",
28
- scene_number=16,
29
- scene_frames_len=120,
30
- stride=1,
31
- saved_rgb_dir="",
32
- saved_disp_dir="",
33
- ):
34
- scenes_names = os.listdir(root)
35
- scenes_names = sorted(scenes_names)[:scene_number]
36
- all_samples = []
37
- for i, seq_name in enumerate(tqdm(scenes_names)):
38
- all_img_names = os.listdir(osp.join(root, seq_name, "color"))
39
- all_img_names = [x for x in all_img_names if x.endswith(".jpg")]
40
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0]))
41
- all_img_names = all_img_names[:scene_frames_len:stride]
42
- print(f"sequence frame number: {len(all_img_names)}")
43
-
44
- seq_len = len(all_img_names)
45
- step = sample_len if sample_len > 0 else seq_len
46
-
47
- for ref_idx in range(0, seq_len, step):
48
- print(f"Progress: {seq_name}, {ref_idx // step + 1} / {seq_len//step}")
49
-
50
- video_imgs = []
51
- video_depths = []
52
-
53
- if (ref_idx + step) <= seq_len:
54
- ref_e = ref_idx + step
55
- else:
56
- continue
57
-
58
- for idx in range(ref_idx, ref_e):
59
- im_path = osp.join(root, seq_name, "color", all_img_names[idx])
60
- depth_path = osp.join(
61
- root, seq_name, "depth", all_img_names[idx][:-3] + "png"
62
- )
63
-
64
- depth = depth_read(depth_path)
65
- disp = depth
66
-
67
- video_depths.append(disp)
68
- video_imgs.append(np.array(Image.open(im_path)))
69
-
70
- disp_video = np.array(video_depths)[:, None]
71
- img_video = np.array(video_imgs)[..., 0:3]
72
-
73
- disp_video = disp_video[:, :, 8:-8, 11:-11]
74
- img_video = img_video[:, 8:-8, 11:-11, :]
75
-
76
- data_root = saved_rgb_dir + datatset_name
77
- disp_root = saved_disp_dir + datatset_name
78
- os.makedirs(data_root, exist_ok=True)
79
- os.makedirs(disp_root, exist_ok=True)
80
-
81
- img_video_dir = data_root
82
- disp_video_dir = disp_root
83
-
84
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
85
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
86
-
87
- imageio.mimsave(
88
- img_video_path, img_video, fps=15, quality=9, macro_block_size=1
89
- )
90
- np.savez(disp_video_path, disparity=disp_video)
91
-
92
- sample = {}
93
- sample["filepath_left"] = os.path.join(
94
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
95
- )
96
- sample["filepath_disparity"] = os.path.join(
97
- f"{datatset_name}/{seq_name}_disparity.npz"
98
- )
99
-
100
- all_samples.append(sample)
101
-
102
- filename_ = csv_save_path
103
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
104
- fields = ["filepath_left", "filepath_disparity"]
105
- with open(filename_, "w") as csvfile:
106
- writer = csv.DictWriter(csvfile, fieldnames=fields)
107
- writer.writeheader()
108
- writer.writerows(all_samples)
109
-
110
- print(f"{filename_} has been saved.")
111
-
112
-
113
- if __name__ == "__main__":
114
- extract_scannet(
115
- root="path/to/ScanNet_v2/raw/scans_test",
116
- saved_rgb_dir="./benchmark/datasets/",
117
- saved_disp_dir="./benchmark/datasets/",
118
- csv_save_path=f"./benchmark/datasets/scannet.csv",
119
- sample_len=-1,
120
- datatset_name="scannet",
121
- scene_number=100,
122
- scene_frames_len=90 * 3,
123
- stride=3,
124
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/dataset_extract_sintel.py DELETED
@@ -1,137 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
-
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
- # # Data loading based on https://github.com/NVIDIA/flownet2-pytorch
7
-
8
-
9
- import os
10
- import numpy as np
11
- import os.path as osp
12
- from PIL import Image
13
- from tqdm import tqdm
14
- import csv
15
- import imageio
16
-
17
-
18
- # Check for endianness, based on Daniel Scharstein's optical flow code.
19
- # Using little-endian architecture, these two should be equal.
20
- TAG_FLOAT = 202021.25
21
- TAG_CHAR = "PIEH"
22
-
23
-
24
- def depth_read(filename):
25
- """Read depth data from file, return as numpy array."""
26
- f = open(filename, "rb")
27
- check = np.fromfile(f, dtype=np.float32, count=1)[0]
28
- assert (
29
- check == TAG_FLOAT
30
- ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
31
- TAG_FLOAT, check
32
- )
33
- width = np.fromfile(f, dtype=np.int32, count=1)[0]
34
- height = np.fromfile(f, dtype=np.int32, count=1)[0]
35
- size = width * height
36
- assert (
37
- width > 0 and height > 0 and size > 1 and size < 100000000
38
- ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
39
- width, height
40
- )
41
- depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
42
- return depth
43
-
44
-
45
- def extract_sintel(
46
- root,
47
- depth_root,
48
- sample_len=-1,
49
- csv_save_path="",
50
- datatset_name="",
51
- saved_rgb_dir="",
52
- saved_disp_dir="",
53
- ):
54
- scenes_names = os.listdir(root)
55
- all_samples = []
56
- for i, seq_name in enumerate(tqdm(scenes_names)):
57
- all_img_names = os.listdir(os.path.join(root, seq_name))
58
- all_img_names = [x for x in all_img_names if x.endswith(".png")]
59
- all_img_names.sort()
60
- all_img_names = sorted(all_img_names, key=lambda x: int(x.split(".")[0][-4:]))
61
-
62
- seq_len = len(all_img_names)
63
- step = sample_len if sample_len > 0 else seq_len
64
-
65
- for ref_idx in range(0, seq_len, step):
66
- print(f"Progress: {seq_name}, {ref_idx // step} / {seq_len // step}")
67
-
68
- video_imgs = []
69
- video_depths = []
70
-
71
- if (ref_idx + step) <= seq_len:
72
- ref_e = ref_idx + step
73
- else:
74
- continue
75
-
76
- for idx in range(ref_idx, ref_e):
77
- im_path = osp.join(root, seq_name, all_img_names[idx])
78
- depth_path = osp.join(
79
- depth_root, seq_name, all_img_names[idx][:-3] + "dpt"
80
- )
81
-
82
- depth = depth_read(depth_path)
83
- disp = depth
84
-
85
- video_depths.append(disp)
86
- video_imgs.append(np.array(Image.open(im_path)))
87
-
88
- disp_video = np.array(video_depths)[:, None]
89
- img_video = np.array(video_imgs)[..., 0:3]
90
-
91
- data_root = saved_rgb_dir + datatset_name
92
- disp_root = saved_disp_dir + datatset_name
93
- os.makedirs(data_root, exist_ok=True)
94
- os.makedirs(disp_root, exist_ok=True)
95
-
96
- img_video_dir = data_root
97
- disp_video_dir = disp_root
98
-
99
- img_video_path = os.path.join(img_video_dir, f"{seq_name}_rgb_left.mp4")
100
- disp_video_path = os.path.join(disp_video_dir, f"{seq_name}_disparity.npz")
101
-
102
- imageio.mimsave(
103
- img_video_path, img_video, fps=15, quality=10, macro_block_size=1
104
- )
105
- np.savez(disp_video_path, disparity=disp_video)
106
-
107
- sample = {}
108
- sample["filepath_left"] = os.path.join(
109
- f"{datatset_name}/{seq_name}_rgb_left.mp4"
110
- )
111
- sample["filepath_disparity"] = os.path.join(
112
- f"{datatset_name}/{seq_name}_disparity.npz"
113
- )
114
-
115
- all_samples.append(sample)
116
-
117
- filename_ = csv_save_path
118
- os.makedirs(os.path.dirname(filename_), exist_ok=True)
119
- fields = ["filepath_left", "filepath_disparity"]
120
- with open(filename_, "w") as csvfile:
121
- writer = csv.DictWriter(csvfile, fieldnames=fields)
122
- writer.writeheader()
123
- writer.writerows(all_samples)
124
-
125
- print(f"{filename_} has been saved.")
126
-
127
-
128
- if __name__ == "__main__":
129
- extract_sintel(
130
- root="path/to/Sintel-Depth/training_image/clean",
131
- depth_root="path/to/Sintel-Depth/MPI-Sintel-depth-training-20150305/training/depth",
132
- saved_rgb_dir="./benchmark/datasets/",
133
- saved_disp_dir="./benchmark/datasets/",
134
- csv_save_path=f"./benchmark/datasets/sintel.csv",
135
- sample_len=-1,
136
- datatset_name="sintel",
137
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/demo.sh DELETED
@@ -1,18 +0,0 @@
1
- #!/bin/sh
2
- set -x
3
- set -e
4
-
5
- test_case=$1
6
- gpu_id=$2
7
- process_length=$3
8
- saved_root=$4
9
- saved_dataset_folder=$5
10
- overlap=$6
11
- dataset=$7
12
-
13
- CUDA_VISIBLE_DEVICES=${gpu_id} PYTHONPATH=. python run.py \
14
- --video-path ${test_case} \
15
- --save-folder ${saved_root}/${saved_dataset_folder} \
16
- --process-length ${process_length} \
17
- --dataset ${dataset} \
18
- --overlap ${overlap}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/eval/eval.py DELETED
@@ -1,282 +0,0 @@
1
- import numpy as np
2
- import os
3
- import torch
4
- import cv2
5
- import csv
6
- from metric import *
7
- import metric
8
- import argparse
9
- from tqdm import tqdm
10
- import json
11
-
12
-
13
- device = 'cuda'
14
- eval_metrics = [
15
- "abs_relative_difference",
16
- "rmse_linear",
17
- "delta1_acc",
18
- # "squared_relative_difference",
19
- # "rmse_log",
20
- # "log10",
21
- # "delta2_acc",
22
- # "delta3_acc",
23
- # "i_rmse",
24
- # "silog_rmse",
25
- ]
26
-
27
-
28
- def depth2disparity(depth, return_mask=False):
29
- if isinstance(depth, torch.Tensor):
30
- disparity = torch.zeros_like(depth)
31
- elif isinstance(depth, np.ndarray):
32
- disparity = np.zeros_like(depth)
33
- non_negtive_mask = depth > 0
34
- disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
35
- if return_mask:
36
- return disparity, non_negtive_mask
37
- else:
38
- return disparity
39
-
40
-
41
- def resize_images(images, new_size):
42
- resized_images = np.empty(
43
- (images.shape[0], new_size[0], new_size[1], images.shape[3])
44
- )
45
-
46
- for i, image in enumerate(images):
47
- if image.shape[2]==1:
48
- resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))[..., None]
49
- else:
50
- resized_images[i] = cv2.resize(image, (new_size[1], new_size[0]))
51
-
52
- return resized_images
53
-
54
-
55
- def eval_single(
56
- pred_disp_path,
57
- gt_disp_path,
58
- seq_len=98,
59
- domain='depth',
60
- method_type="ours",
61
- dataset_max_depth="70"
62
- ):
63
- # load data
64
- gt_disp = np.load(gt_disp_path)['disparity'] \
65
- if 'disparity' in np.load(gt_disp_path).files else \
66
- np.load(gt_disp_path)['arr_0'] # (t, 1, h, w)
67
-
68
- if method_type=="ours":
69
- pred_disp = np.load(pred_disp_path)['depth'] # (t, h, w)
70
- if method_type=="depth_anything":
71
- pred_disp = np.load(pred_disp_path)['disparity'] # (t, h, w)
72
-
73
- # seq_len
74
- if pred_disp.shape[0] < seq_len:
75
- seq_len = pred_disp.shape[0]
76
-
77
- # preprocess
78
- pred_disp = resize_images(pred_disp[..., None], (gt_disp.shape[-2], gt_disp.shape[-1])) # (t, h, w)
79
- pred_disp = pred_disp[..., 0] # (t, h, w)
80
- pred_disp = pred_disp[:seq_len]
81
- gt_disp = gt_disp[:seq_len, 0] # (t, h, w)
82
-
83
- # valid mask
84
- valid_mask = np.logical_and(
85
- (gt_disp > 1e-3),
86
- (gt_disp < dataset_max_depth)
87
- )
88
- pred_disp = np.clip(pred_disp, a_min=1e-3, a_max=None)
89
- pred_disp_masked = pred_disp[valid_mask].reshape((-1, 1))
90
-
91
- # choose evaluation domain
92
- DOMAIN = domain
93
- if DOMAIN=='disp':
94
- # align in real disp, calc in disp
95
- gt_disp_maksed = gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64)
96
- elif DOMAIN=='depth':
97
- # align in disp = 1/depth, calc in depth
98
- gt_disp_maksed = 1. / (gt_disp[valid_mask].reshape((-1, 1)).astype(np.float64) + 1e-8)
99
- else:
100
- pass
101
-
102
-
103
- # calc scale and shift
104
- _ones = np.ones_like(pred_disp_masked)
105
- A = np.concatenate([pred_disp_masked, _ones], axis=-1)
106
- X = np.linalg.lstsq(A, gt_disp_maksed, rcond=None)[0]
107
- scale, shift = X # gt = scale * pred + shift
108
-
109
- # align
110
- aligned_pred = scale * pred_disp + shift
111
- aligned_pred = np.clip(aligned_pred, a_min=1e-3, a_max=None)
112
-
113
-
114
- # align in real disp, calc in disp
115
- if DOMAIN=='disp':
116
- pred_depth = aligned_pred
117
- gt_depth = gt_disp
118
- # align in disp = 1/depth, calc in depth
119
- elif DOMAIN=='depth':
120
- pred_depth = depth2disparity(aligned_pred)
121
- gt_depth = gt_disp
122
- else:
123
- pass
124
-
125
- # metric evaluation, clip to dataset min max
126
- pred_depth = np.clip(
127
- pred_depth, a_min=1e-3, a_max=dataset_max_depth
128
- )
129
-
130
- # evaluate metric
131
- sample_metric = []
132
- metric_funcs = [getattr(metric, _met) for _met in eval_metrics]
133
-
134
- # Evaluate
135
- sample_metric = []
136
- pred_depth_ts = torch.from_numpy(pred_depth).to(device)
137
- gt_depth_ts = torch.from_numpy(gt_depth).to(device)
138
- valid_mask_ts = torch.from_numpy(valid_mask).to(device)
139
-
140
- n = valid_mask.sum((-1, -2))
141
- valid_frame = (n > 0)
142
- pred_depth_ts = pred_depth_ts[valid_frame]
143
- gt_depth_ts = gt_depth_ts[valid_frame]
144
- valid_mask_ts = valid_mask_ts[valid_frame]
145
-
146
- for met_func in metric_funcs:
147
- _metric_name = met_func.__name__
148
- _metric = met_func(pred_depth_ts, gt_depth_ts, valid_mask_ts).item()
149
- sample_metric.append(_metric)
150
-
151
- return sample_metric
152
-
153
-
154
-
155
- if __name__=="__main__":
156
- parser = argparse.ArgumentParser()
157
-
158
- parser.add_argument(
159
- "--seq_len",
160
- type=int,
161
- default=50,
162
- help="Max video frame length for evaluation."
163
- )
164
-
165
- parser.add_argument(
166
- "--domain",
167
- type=str,
168
- default="depth",
169
- choices=["depth", "disp"],
170
- help="Domain of metric calculation."
171
- )
172
-
173
- parser.add_argument(
174
- "--method_type",
175
- type=str,
176
- default="ours",
177
- choices=["ours", "depth_anything"],
178
- help="Choose the methods."
179
- )
180
-
181
- parser.add_argument(
182
- "--dataset_max_depth",
183
- type=int,
184
- default=70,
185
- help="Dataset max depth clip."
186
- )
187
-
188
- parser.add_argument(
189
- "--pred_disp_root",
190
- type=str,
191
- default="./demo_output",
192
- help="Predicted output directory."
193
- )
194
-
195
- parser.add_argument(
196
- "--gt_disp_root",
197
- type=str,
198
- required=True,
199
- help="GT depth directory."
200
- )
201
-
202
- parser.add_argument(
203
- "--dataset",
204
- type=str,
205
- required=True,
206
- help="Choose the datasets."
207
- )
208
-
209
- parser.add_argument(
210
- "--meta_path",
211
- type=str,
212
- required=True,
213
- help="Path of test dataset csv file."
214
- )
215
-
216
-
217
- args = parser.parse_args()
218
-
219
- SEQ_LEN = args.seq_len
220
- method_type = args.method_type
221
- if method_type == "ours":
222
- pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
223
- else:
224
- # pred_disp_root = args.pred_disp_root
225
- pred_disp_root = os.path.join(args.pred_disp_root, f'results_{args.dataset}')
226
- domain = args.domain
227
- dataset_max_depth = args.dataset_max_depth
228
- saved_json_path = os.path.join(args.pred_disp_root, f"results_{args.dataset}.json")
229
-
230
- meta_path = args.meta_path
231
-
232
- assert method_type in ["depth_anything", "ours"], "Invalid method type, must be in ['depth_anything', 'ours']"
233
- assert domain in ["depth", "disp"], "Invalid domain type, must be in ['depth', 'disp']"
234
-
235
- with open(meta_path, mode="r", encoding="utf-8") as csvfile:
236
- csv_reader = csv.DictReader(csvfile)
237
- samples = list(csv_reader)
238
-
239
- # iterate all cases
240
- results_all = []
241
- for i, sample in enumerate(tqdm(samples)):
242
- gt_disp_path = os.path.join(args.gt_disp_root, samples[i]['filepath_disparity'])
243
- if method_type=="ours":
244
- pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
245
- pred_disp_path = pred_disp_path.replace("disparity", "rgb_left")
246
-
247
- if method_type=="depth_anything":
248
- pred_disp_path = os.path.join(pred_disp_root, samples[i]['filepath_disparity'])
249
- pred_disp_path = pred_disp_path.replace("disparity", "rgb_left_depth")
250
-
251
- results_single = eval_single(
252
- pred_disp_path,
253
- gt_disp_path,
254
- seq_len=SEQ_LEN,
255
- domain=domain,
256
- method_type=method_type,
257
- dataset_max_depth=dataset_max_depth
258
- )
259
-
260
- results_all.append(results_single)
261
-
262
- # avarage
263
- final_results = np.array(results_all)
264
- final_results_mean = np.mean(final_results, axis=0)
265
- print("")
266
-
267
- # save mean to json
268
- result_dict = { 'name': method_type }
269
- for i, metric in enumerate(eval_metrics):
270
- result_dict[metric] = final_results_mean[i]
271
- print(f"{metric}: {final_results_mean[i]:04f}")
272
-
273
- # save each case to json
274
- for i, results in enumerate(results_all):
275
- result_dict[samples[i]['filepath_disparity']] = results
276
-
277
- # write json
278
- with open(saved_json_path, 'w') as f:
279
- json.dump(result_dict, f, indent=4)
280
- print("")
281
- print(f"Evaluation results json are saved to {saved_json_path}")
282
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/eval/eval.sh DELETED
@@ -1,51 +0,0 @@
1
- #!/bin/sh
2
- set -x
3
- set -e
4
-
5
- pred_disp_root=/path/to/saved/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] prediction
6
- gt_disp_root=/path/to/gt_depth/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] ground truth
7
-
8
- # eval sintel
9
- python benchmark/eval/eval.py \
10
- --meta_path ./eval/csv/meta_sintel.csv \
11
- --dataset_max_depth 70 \
12
- --dataset sintel \
13
- --seq_len 50 \
14
- --pred_disp_root ${pred_disp_root} \
15
- --gt_disp_root ${gt_disp_root} \
16
-
17
- # eval scannet
18
- python benchmark/eval/eval.py \
19
- --meta_path ./eval/csv/meta_scannet_test.csv \
20
- --dataset_max_depth 10 \
21
- --dataset scannet \
22
- --seq_len 90 \
23
- --pred_disp_root ${pred_disp_root} \
24
- --gt_disp_root ${gt_disp_root} \
25
-
26
- # eval kitti
27
- python benchmark/eval/eval.py \
28
- --meta_path ./eval/csv/meta_kitti_val.csv \
29
- --dataset_max_depth 80 \
30
- --dataset kitti \
31
- --seq_len 110 \
32
- --pred_disp_root ${pred_disp_root} \
33
- --gt_disp_root ${gt_disp_root} \
34
-
35
- # eval bonn
36
- python benchmark/eval/eval.py \
37
- --meta_path ./eval/csv/meta_bonn.csv \
38
- --dataset_max_depth 10 \
39
- --dataset bonn \
40
- --seq_len 110 \
41
- --pred_disp_root ${pred_disp_root} \
42
- --gt_disp_root ${gt_disp_root} \
43
-
44
- # eval nyu
45
- python benchmark/eval/eval.py \
46
- --meta_path ./eval/csv/meta_nyu_test.csv \
47
- --dataset_max_depth 10 \
48
- --dataset nyu \
49
- --seq_len 1 \
50
- --pred_disp_root ${pred_disp_root} \
51
- --gt_disp_root ${gt_disp_root} \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/eval/metric.py DELETED
@@ -1,128 +0,0 @@
1
- import torch
2
-
3
-
4
- def abs_relative_difference(output, target, valid_mask=None):
5
- actual_output = output
6
- actual_target = target
7
- abs_relative_diff = torch.abs(actual_output - actual_target) / actual_target
8
- if valid_mask is not None:
9
- abs_relative_diff[~valid_mask] = 0
10
- n = valid_mask.sum((-1, -2))
11
- else:
12
- n = output.shape[-1] * output.shape[-2]
13
- abs_relative_diff = torch.sum(abs_relative_diff, (-1, -2)) / n
14
- return abs_relative_diff.mean()
15
-
16
-
17
- def squared_relative_difference(output, target, valid_mask=None):
18
- actual_output = output
19
- actual_target = target
20
- square_relative_diff = (
21
- torch.pow(torch.abs(actual_output - actual_target), 2) / actual_target
22
- )
23
- if valid_mask is not None:
24
- square_relative_diff[~valid_mask] = 0
25
- n = valid_mask.sum((-1, -2))
26
- else:
27
- n = output.shape[-1] * output.shape[-2]
28
- square_relative_diff = torch.sum(square_relative_diff, (-1, -2)) / n
29
- return square_relative_diff.mean()
30
-
31
-
32
- def rmse_linear(output, target, valid_mask=None):
33
- actual_output = output
34
- actual_target = target
35
- diff = actual_output - actual_target
36
- if valid_mask is not None:
37
- diff[~valid_mask] = 0
38
- n = valid_mask.sum((-1, -2))
39
- else:
40
- n = output.shape[-1] * output.shape[-2]
41
- diff2 = torch.pow(diff, 2)
42
- mse = torch.sum(diff2, (-1, -2)) / n
43
- rmse = torch.sqrt(mse)
44
- return rmse.mean()
45
-
46
-
47
- def rmse_log(output, target, valid_mask=None):
48
- diff = torch.log(output) - torch.log(target)
49
- if valid_mask is not None:
50
- diff[~valid_mask] = 0
51
- n = valid_mask.sum((-1, -2))
52
- else:
53
- n = output.shape[-1] * output.shape[-2]
54
- diff2 = torch.pow(diff, 2)
55
- mse = torch.sum(diff2, (-1, -2)) / n # [B]
56
- rmse = torch.sqrt(mse)
57
- return rmse.mean()
58
-
59
-
60
- def log10(output, target, valid_mask=None):
61
- if valid_mask is not None:
62
- diff = torch.abs(
63
- torch.log10(output[valid_mask]) - torch.log10(target[valid_mask])
64
- )
65
- else:
66
- diff = torch.abs(torch.log10(output) - torch.log10(target))
67
- return diff.mean()
68
-
69
-
70
- # adapt from: https://github.com/imran3180/depth-map-prediction/blob/master/main.py
71
- def threshold_percentage(output, target, threshold_val, valid_mask=None):
72
- d1 = output / target
73
- d2 = target / output
74
- max_d1_d2 = torch.max(d1, d2)
75
- zero = torch.zeros(*output.shape)
76
- one = torch.ones(*output.shape)
77
- bit_mat = torch.where(max_d1_d2.cpu() < threshold_val, one, zero)
78
- if valid_mask is not None:
79
- bit_mat[~valid_mask] = 0
80
- n = valid_mask.sum((-1, -2))
81
- else:
82
- n = output.shape[-1] * output.shape[-2]
83
- count_mat = torch.sum(bit_mat, (-1, -2))
84
- threshold_mat = count_mat / n.cpu()
85
- return threshold_mat.mean()
86
-
87
-
88
- def delta1_acc(pred, gt, valid_mask):
89
- return threshold_percentage(pred, gt, 1.25, valid_mask)
90
-
91
-
92
- def delta2_acc(pred, gt, valid_mask):
93
- return threshold_percentage(pred, gt, 1.25**2, valid_mask)
94
-
95
-
96
- def delta3_acc(pred, gt, valid_mask):
97
- return threshold_percentage(pred, gt, 1.25**3, valid_mask)
98
-
99
-
100
- def i_rmse(output, target, valid_mask=None):
101
- output_inv = 1.0 / output
102
- target_inv = 1.0 / target
103
- diff = output_inv - target_inv
104
- if valid_mask is not None:
105
- diff[~valid_mask] = 0
106
- n = valid_mask.sum((-1, -2))
107
- else:
108
- n = output.shape[-1] * output.shape[-2]
109
- diff2 = torch.pow(diff, 2)
110
- mse = torch.sum(diff2, (-1, -2)) / n # [B]
111
- rmse = torch.sqrt(mse)
112
- return rmse.mean()
113
-
114
-
115
- def silog_rmse(depth_pred, depth_gt, valid_mask=None):
116
- diff = torch.log(depth_pred) - torch.log(depth_gt)
117
- if valid_mask is not None:
118
- diff[~valid_mask] = 0
119
- n = valid_mask.sum((-1, -2))
120
- else:
121
- n = depth_gt.shape[-2] * depth_gt.shape[-1]
122
-
123
- diff2 = torch.pow(diff, 2)
124
-
125
- first_term = torch.sum(diff2, (-1, -2)) / n
126
- second_term = torch.pow(torch.sum(diff, (-1, -2)), 2) / (n**2)
127
- loss = torch.sqrt(torch.mean(first_term - second_term)) * 100
128
- return loss
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/infer/infer.sh DELETED
@@ -1,55 +0,0 @@
1
- #!/bin/sh
2
- set -x
3
- set -e
4
-
5
- input_rgb_root=/path/to/input/RGB/root_directory # The parent directory that contaning [sintel, scannet, KITTI, bonn, NYUv2] input RGB
6
- saved_root=/path/to/saved/root_directory # The parent directory that saving [sintel, scannet, KITTI, bonn, NYUv2] prediction
7
- gpus=0,1,2,3 # Using 4 GPU, you can adjust it according to your device
8
-
9
-
10
- # infer sintel
11
- python benchmark/infer/infer_batch.py \
12
- --meta_path ./eval/csv/meta_sintel.csv \
13
- --saved_root ${saved_root} \
14
- --saved_dataset_folder results_sintel \
15
- --process_length 50 \
16
- --gpus ${gpus} \
17
- --dataset sintel \
18
-
19
- # infer scannet
20
- python benchmark/infer/infer_batch.py \
21
- --meta_path ./eval/csv/meta_scannet_test.csv \
22
- --saved_root ${saved_root} \
23
- --saved_dataset_folder results_scannet \
24
- --process_length 90 \
25
- --gpus ${gpus} \
26
- --dataset scannet \
27
-
28
- # infer kitti
29
- python benchmark/infer/infer_batch.py \
30
- --meta_path ./eval/csv/meta_kitti_val.csv \
31
- --saved_root ${saved_root} \
32
- --saved_dataset_folder results_kitti \
33
- --process_length 110 \
34
- --gpus ${gpus} \
35
- --dataset kitti \
36
-
37
- # infer bonn
38
- python benchmark/infer/infer_batch.py \
39
- --meta_path ./eval/csv/meta_bonn.csv \
40
- --saved_root ${saved_root} \
41
- --saved_dataset_folder results_bonn \
42
- --input_rgb_root ${input_rgb_root} \
43
- --process_length 110 \
44
- --gpus ${gpus} \
45
- --dataset bonn \
46
-
47
- # infer nyu
48
- python benchmark/infer/infer_batch.py \
49
- --meta_path ./eval/csv/meta_nyu_test.csv \
50
- --saved_root ${saved_root} \
51
- --saved_dataset_folder results_nyu \
52
- --process_length 1 \
53
- --gpus ${gpus} \
54
- --overlap 0 \
55
- --dataset nyu \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
benchmark/infer/infer_batch.py DELETED
@@ -1,46 +0,0 @@
1
- import os
2
- import multiprocessing as mp
3
- import csv
4
- import argparse
5
-
6
-
7
- def process_video(video_path, gpu_id, save_folder, args):
8
- os.system(f'sh ./benchmark/demo.sh {video_path} {gpu_id} {int(args.process_length)} {args.saved_root} {save_folder} {args.overlap} {args.dataset}')
9
-
10
- if __name__ == '__main__':
11
-
12
- parser = argparse.ArgumentParser()
13
-
14
- parser.add_argument('--meta_path', type=str)
15
- parser.add_argument('--saved_dataset_folder', type=str)
16
- parser.add_argument('--saved_root', type=str, default="./output")
17
- parser.add_argument('--input_rgb_root', type=str)
18
-
19
- parser.add_argument('--process_length', type=int, default=110)
20
- parser.add_argument('--gpus', type=str, default="0,1,2,3")
21
-
22
- parser.add_argument('--overlap', type=int, default=1)
23
- parser.add_argument('--dataset', type=str, default="open")
24
-
25
- args = parser.parse_args()
26
- gpus = args.gpus.strip().split(',')
27
-
28
- with open(args.meta_path, mode="r", encoding="utf-8") as csvfile:
29
- csv_reader = csv.DictReader(csvfile)
30
- test_samples = list(csv_reader)
31
- batch_size = len(gpus)
32
- video_batches = [test_samples[i:i+batch_size] for i in range(0, len(test_samples), batch_size)]
33
- print("gpus+++: ", gpus)
34
-
35
- processes = []
36
- for video_batch in video_batches:
37
- for i, sample in enumerate(video_batch):
38
- video_path = os.path.join(args.input_rgb_root, sample["filepath_left"])
39
- save_folder = os.path.join(args.saved_dataset_folder, os.path.dirname(sample["filepath_left"]))
40
- gpu_id = gpus[i % len(gpus)]
41
- p = mp.Process(target=process_video, args=(video_path, gpu_id, save_folder, args))
42
- p.start()
43
- processes.append(p)
44
-
45
- for p in processes:
46
- p.join()