Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,003 Bytes
916d528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import torch
def abs_relative_difference(output, target, valid_mask=None):
actual_output = output
actual_target = target
abs_relative_diff = torch.abs(actual_output - actual_target) / actual_target
if valid_mask is not None:
abs_relative_diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
abs_relative_diff = torch.sum(abs_relative_diff, (-1, -2)) / n
return abs_relative_diff.mean()
def squared_relative_difference(output, target, valid_mask=None):
actual_output = output
actual_target = target
square_relative_diff = (
torch.pow(torch.abs(actual_output - actual_target), 2) / actual_target
)
if valid_mask is not None:
square_relative_diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
square_relative_diff = torch.sum(square_relative_diff, (-1, -2)) / n
return square_relative_diff.mean()
def rmse_linear(output, target, valid_mask=None):
actual_output = output
actual_target = target
diff = actual_output - actual_target
if valid_mask is not None:
diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
diff2 = torch.pow(diff, 2)
mse = torch.sum(diff2, (-1, -2)) / n
rmse = torch.sqrt(mse)
return rmse.mean()
def rmse_log(output, target, valid_mask=None):
diff = torch.log(output) - torch.log(target)
if valid_mask is not None:
diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
diff2 = torch.pow(diff, 2)
mse = torch.sum(diff2, (-1, -2)) / n # [B]
rmse = torch.sqrt(mse)
return rmse.mean()
def log10(output, target, valid_mask=None):
if valid_mask is not None:
diff = torch.abs(
torch.log10(output[valid_mask]) - torch.log10(target[valid_mask])
)
else:
diff = torch.abs(torch.log10(output) - torch.log10(target))
return diff.mean()
# adapt from: https://github.com/imran3180/depth-map-prediction/blob/master/main.py
def threshold_percentage(output, target, threshold_val, valid_mask=None):
d1 = output / target
d2 = target / output
max_d1_d2 = torch.max(d1, d2)
zero = torch.zeros(*output.shape)
one = torch.ones(*output.shape)
bit_mat = torch.where(max_d1_d2.cpu() < threshold_val, one, zero)
if valid_mask is not None:
bit_mat[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
count_mat = torch.sum(bit_mat, (-1, -2))
threshold_mat = count_mat / n.cpu()
return threshold_mat.mean()
def delta1_acc(pred, gt, valid_mask):
return threshold_percentage(pred, gt, 1.25, valid_mask)
def delta2_acc(pred, gt, valid_mask):
return threshold_percentage(pred, gt, 1.25**2, valid_mask)
def delta3_acc(pred, gt, valid_mask):
return threshold_percentage(pred, gt, 1.25**3, valid_mask)
def i_rmse(output, target, valid_mask=None):
output_inv = 1.0 / output
target_inv = 1.0 / target
diff = output_inv - target_inv
if valid_mask is not None:
diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = output.shape[-1] * output.shape[-2]
diff2 = torch.pow(diff, 2)
mse = torch.sum(diff2, (-1, -2)) / n # [B]
rmse = torch.sqrt(mse)
return rmse.mean()
def silog_rmse(depth_pred, depth_gt, valid_mask=None):
diff = torch.log(depth_pred) - torch.log(depth_gt)
if valid_mask is not None:
diff[~valid_mask] = 0
n = valid_mask.sum((-1, -2))
else:
n = depth_gt.shape[-2] * depth_gt.shape[-1]
diff2 = torch.pow(diff, 2)
first_term = torch.sum(diff2, (-1, -2)) / n
second_term = torch.pow(torch.sum(diff, (-1, -2)), 2) / (n**2)
loss = torch.sqrt(torch.mean(first_term - second_term)) * 100
return loss
|