Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,643 Bytes
acd6fd7 7c1a14b acd6fd7 7c1a14b acd6fd7 7c1a14b acd6fd7 7c1a14b acd6fd7 7c1a14b acd6fd7 7c1a14b acd6fd7 7c1a14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from typing import Union, List
import tempfile
import numpy as np
import PIL.Image
import matplotlib.cm as cm
import mediapy
import torch
def save_video(
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]],
output_video_path: str = None,
fps: int = 10,
crf: int = 18,
) -> str:
if output_video_path is None:
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
if isinstance(video_frames[0], np.ndarray):
video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
elif isinstance(video_frames[0], PIL.Image.Image):
video_frames = [np.array(frame) for frame in video_frames]
mediapy.write_video(output_video_path, video_frames, fps=fps, crf=crf)
return output_video_path
class ColorMapper:
# a color mapper to map depth values to a certain colormap
def __init__(self, colormap: str = "inferno"):
self.colormap = torch.tensor(cm.get_cmap(colormap).colors)
def apply(self, image: torch.Tensor, v_min=None, v_max=None):
# assert len(image.shape) == 2
if v_min is None:
v_min = image.min()
if v_max is None:
v_max = image.max()
image = (image - v_min) / (v_max - v_min)
image = (image * 255).long()
image = self.colormap[image]
return image
def vis_sequence_depth(depths: np.ndarray, v_min=None, v_max=None):
visualizer = ColorMapper()
if v_min is None:
v_min = depths.min()
if v_max is None:
v_max = depths.max()
res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy()
return res
|