Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,974 Bytes
7c1a14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import numpy as np
import cv2
import matplotlib.cm as cm
import torch
def read_video_frames(video_path, process_length, target_fps, max_res):
# a simple function to read video frames
cap = cv2.VideoCapture(video_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# round the height and width to the nearest multiple of 64
height = round(original_height / 64) * 64
width = round(original_width / 64) * 64
# resize the video if the height or width is larger than max_res
if max(height, width) > max_res:
scale = max_res / max(original_height, original_width)
height = round(original_height * scale / 64) * 64
width = round(original_width * scale / 64) * 64
if target_fps < 0:
target_fps = original_fps
stride = max(round(original_fps / target_fps), 1)
frames = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret or (process_length > 0 and frame_count >= process_length):
break
if frame_count % stride == 0:
frame = cv2.resize(frame, (width, height))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
frames.append(frame.astype("float32") / 255.0)
frame_count += 1
cap.release()
frames = np.array(frames)
return frames, target_fps
def save_video(
video_frames,
output_video_path,
fps: int = 15,
) -> str:
# a simple function to save video frames
height, width = video_frames[0].shape[:2]
is_color = video_frames[0].ndim == 3
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video_writer = cv2.VideoWriter(
output_video_path, fourcc, fps, (width, height), isColor=is_color
)
for frame in video_frames:
frame = (frame * 255).astype(np.uint8)
if is_color:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
video_writer.write(frame)
video_writer.release()
return output_video_path
class ColorMapper:
# a color mapper to map depth values to a certain colormap
def __init__(self, colormap: str = "inferno"):
self.colormap = torch.tensor(cm.get_cmap(colormap).colors)
def apply(self, image: torch.Tensor, v_min=None, v_max=None):
# assert len(image.shape) == 2
if v_min is None:
v_min = image.min()
if v_max is None:
v_max = image.max()
image = (image - v_min) / (v_max - v_min)
image = (image * 255).long()
image = self.colormap[image]
return image
def vis_sequence_depth(depths: np.ndarray, v_min=None, v_max=None):
visualizer = ColorMapper()
if v_min is None:
v_min = depths.min()
if v_max is None:
v_max = depths.max()
res = visualizer.apply(torch.tensor(depths), v_min=v_min, v_max=v_max).numpy()
return res
|