from huggingface_hub import snapshot_download import os import io import time import uuid import tempfile import numpy as np import matplotlib.pyplot as plt import pdfplumber import spacy import torch import sqlite3 import uvicorn import moviepy.editor as mp from threading import Thread from datetime import datetime, timedelta from typing import List, Dict, Optional from fastapi import FastAPI, File, UploadFile, Form, Depends, HTTPException, status, Header from fastapi.responses import FileResponse, HTMLResponse, JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware import logging from pydantic import BaseModel from transformers import ( AutoTokenizer, AutoModelForQuestionAnswering, pipeline, TrainingArguments, Trainer ) from sentence_transformers import SentenceTransformer from passlib.context import CryptContext from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm import jwt from dotenv import load_dotenv # Import get_db_connection from auth from auth import ( User, UserCreate, Token, get_current_active_user, authenticate_user, create_access_token, hash_password, register_user, check_subscription_access, SUBSCRIPTION_TIERS, JWT_EXPIRATION_DELTA, get_db_connection, update_auth_db_schema ) # Add this import near the top with your other imports from paypal_integration import ( create_user_subscription, verify_subscription_payment, update_user_subscription, handle_subscription_webhook, initialize_database ) from fastapi import Request # Add this if not already imported logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger("app") # Initialize the database # Initialize FastAPI app app = FastAPI( title="Legal Document Analysis API", description="API for analyzing legal documents, videos, and audio", version="1.0.0" ) # Set up CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["https://testing-78wtxfqt0-hardikkandpals-projects.vercel.app", "http://localhost:3000"], # Frontend URL allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) initialize_database() try: update_auth_db_schema() logger.info("Database schema updated successfully") except Exception as e: logger.error(f"Database schema update error: {e}") # Create static directory for file storage os.makedirs("static", exist_ok=True) os.makedirs("uploads", exist_ok=True) os.makedirs("temp", exist_ok=True) app.mount("/static", StaticFiles(directory="static"), name="static") # Set device for model inference device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") # Initialize chat history chat_history = [] # Document context storage document_contexts = {} def store_document_context(task_id, text): """Store document text for later retrieval.""" document_contexts[task_id] = text def load_document_context(task_id): """Load document text for a given task ID.""" return document_contexts.get(task_id, "") def get_db_connection(): """Get a connection to the SQLite database.""" db_path = os.path.join(os.path.dirname(__file__), "legal_analysis.db") conn = sqlite3.connect(db_path) conn.row_factory = sqlite3.Row return conn load_dotenv() DB_PATH = os.getenv("DB_PATH", os.path.join(os.path.dirname(__file__), "data/user_data.db")) os.makedirs(os.path.join(os.path.dirname(__file__), "data"), exist_ok=True) def fine_tune_qa_model(): """Fine-tunes a QA model on the CUAD dataset.""" print("Loading base model for fine-tuning...") tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2") # Load and preprocess CUAD dataset print("Loading CUAD dataset...") from datasets import load_dataset try: dataset = load_dataset("cuad") except Exception as e: print(f"Error loading CUAD dataset: {str(e)}") print("Downloading CUAD dataset from alternative source...") # Implement alternative dataset loading here return tokenizer, model print(f"Dataset loaded with {len(dataset['train'])} training examples") # Preprocess the dataset def preprocess_function(examples): questions = [q.strip() for q in examples["question"]] contexts = [c.strip() for c in examples["context"]] inputs = tokenizer( questions, contexts, max_length=384, truncation="only_second", stride=128, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) offset_mapping = inputs.pop("offset_mapping") sample_map = inputs.pop("overflow_to_sample_mapping") answers = examples["answers"] start_positions = [] end_positions = [] for i, offset in enumerate(offset_mapping): sample_idx = sample_map[i] answer = answers[sample_idx] start_char = answer["answer_start"][0] if len(answer["answer_start"]) > 0 else 0 end_char = start_char + len(answer["text"][0]) if len(answer["text"]) > 0 else 0 sequence_ids = inputs.sequence_ids(i) # Find the start and end of the context idx = 0 while sequence_ids[idx] != 1: idx += 1 context_start = idx while idx < len(sequence_ids) and sequence_ids[idx] == 1: idx += 1 context_end = idx - 1 # If the answer is not fully inside the context, label is (0, 0) if offset[context_start][0] > start_char or offset[context_end][1] < end_char: start_positions.append(0) end_positions.append(0) else: # Otherwise it's the start and end token positions idx = context_start while idx <= context_end and offset[idx][0] <= start_char: idx += 1 start_positions.append(idx - 1) idx = context_end while idx >= context_start and offset[idx][1] >= end_char: idx -= 1 end_positions.append(idx + 1) inputs["start_positions"] = start_positions inputs["end_positions"] = end_positions return inputs print("Preprocessing dataset...") processed_dataset = dataset.map( preprocess_function, batched=True, remove_columns=dataset["train"].column_names, ) print("Splitting dataset...") train_dataset = processed_dataset["train"] val_dataset = processed_dataset["validation"] train_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"]) val_dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "start_positions", "end_positions"]) training_args = TrainingArguments( output_dir="./fine_tuned_legal_qa", evaluation_strategy="steps", eval_steps=100, learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=1, weight_decay=0.01, logging_steps=50, save_steps=100, load_best_model_at_end=True, report_to=[] ) print("✅ Starting fine tuning on CUAD QA dataset...") trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, tokenizer=tokenizer, ) trainer.train() print("✅ Fine tuning completed. Saving model...") model.save_pretrained("./fine_tuned_legal_qa") tokenizer.save_pretrained("./fine_tuned_legal_qa") return tokenizer, model ############################# # Load NLP Models # ############################# # Initialize model variables nlp = None summarizer = None embedding_model = None ner_model = None speech_to_text = None cuad_model = None cuad_tokenizer = None qa_model = None # Add model caching functionality import pickle import os.path #MODELS_CACHE_DIR = "c:\\Users\\hardi\\OneDrive\\Desktop\\New folder (7)\\doc-vid-analyze-main\\models_cache" MODELS_CACHE_DIR = os.getenv("MODELS_CACHE_DIR", "models_cache") os.makedirs(MODELS_CACHE_DIR, exist_ok=True) def download_model_from_hub(model_id, subfolder=None): """Download a model from Hugging Face Hub""" try: local_dir = snapshot_download( repo_id=model_id, subfolder=subfolder, local_dir=os.path.join(MODELS_CACHE_DIR, model_id.replace("/", "_")) ) print(f"✅ Downloaded model {model_id} to {local_dir}") return local_dir except Exception as e: print(f"⚠️ Error downloading model {model_id}: {str(e)}") return None def save_model_to_cache(model, model_name): """Save a model to the cache directory""" try: cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl") with open(cache_path, 'wb') as f: pickle.dump(model, f) print(f"✅ Saved {model_name} to cache") return True except Exception as e: print(f"⚠️ Failed to save {model_name} to cache: {str(e)}") return False def load_model_from_cache(model_name): """Load a model from the cache directory""" try: cache_path = os.path.join(MODELS_CACHE_DIR, f"{model_name}.pkl") if os.path.exists(cache_path): with open(cache_path, 'rb') as f: model = pickle.load(f) print(f"✅ Loaded {model_name} from cache") return model return None except Exception as e: print(f"⚠️ Failed to load {model_name} from cache: {str(e)}") return None # Add a flag to control model loading LOAD_MODELS = os.getenv("LOAD_MODELS", "True").lower() in ("true", "1", "t") try: if LOAD_MODELS: # Try to load SpaCy from cache first nlp = load_model_from_cache("spacy_model") if nlp is None: try: nlp = spacy.load("en_core_web_sm") save_model_to_cache(nlp, "spacy_model") except: print("⚠️ SpaCy model not found, downloading...") spacy.cli.download("en_core_web_sm") nlp = spacy.load("en_core_web_sm") save_model_to_cache(nlp, "spacy_model") print("✅ Loading NLP models...") # Load the summarizer with caching print("Loading summarizer model...") summarizer = load_model_from_cache("summarizer_model") if summarizer is None: try: summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1) save_model_to_cache(summarizer, "summarizer_model") print("✅ Summarizer loaded successfully") except Exception as e: print(f"⚠️ Error loading summarizer: {str(e)}") try: print("Trying alternative summarizer model...") summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=0 if torch.cuda.is_available() else -1) save_model_to_cache(summarizer, "summarizer_model") print("✅ Alternative summarizer loaded successfully") except Exception as e2: print(f"⚠️ Error loading alternative summarizer: {str(e2)}") summarizer = None # Load the embedding model with caching print("Loading embedding model...") embedding_model = load_model_from_cache("embedding_model") if embedding_model is None: try: embedding_model = SentenceTransformer("all-mpnet-base-v2", device=device) save_model_to_cache(embedding_model, "embedding_model") print("✅ Embedding model loaded successfully") except Exception as e: print(f"⚠️ Error loading embedding model: {str(e)}") embedding_model = None # Load the NER model with caching print("Loading NER model...") ner_model = load_model_from_cache("ner_model") if ner_model is None: try: ner_model = pipeline("ner", model="dslim/bert-base-NER", device=0 if torch.cuda.is_available() else -1) save_model_to_cache(ner_model, "ner_model") print("✅ NER model loaded successfully") except Exception as e: print(f"⚠️ Error loading NER model: {str(e)}") ner_model = None # Speech to text model with caching print("Loading speech to text model...") speech_to_text = load_model_from_cache("speech_to_text_model") if speech_to_text is None: try: speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30, device_map="auto" if torch.cuda.is_available() else "cpu") save_model_to_cache(speech_to_text, "speech_to_text_model") print("✅ Speech to text model loaded successfully") except Exception as e: print(f"⚠️ Error loading speech to text model: {str(e)}") speech_to_text = None # Load the fine-tuned model with caching print("Loading fine-tuned CUAD QA model...") cuad_model = load_model_from_cache("cuad_model") cuad_tokenizer = load_model_from_cache("cuad_tokenizer") if cuad_model is None or cuad_tokenizer is None: try: cuad_tokenizer = AutoTokenizer.from_pretrained("hardik8588/fine-tuned-legal-qa") from transformers import AutoModelForQuestionAnswering cuad_model = AutoModelForQuestionAnswering.from_pretrained("hardik8588/fine-tuned-legal-qa") cuad_model.to(device) save_model_to_cache(cuad_tokenizer, "cuad_tokenizer") save_model_to_cache(cuad_model, "cuad_model") print("✅ Successfully loaded fine-tuned model") except Exception as e: print(f"⚠️ Error loading fine-tuned model: {str(e)}") print("⚠️ Falling back to pre-trained model...") try: cuad_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") from transformers import AutoModelForQuestionAnswering cuad_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2") cuad_model.to(device) save_model_to_cache(cuad_tokenizer, "cuad_tokenizer") save_model_to_cache(cuad_model, "cuad_model") print("✅ Pre-trained model loaded successfully") except Exception as e2: print(f"⚠️ Error loading pre-trained model: {str(e2)}") cuad_model = None cuad_tokenizer = None # Load a general QA model with caching print("Loading general QA model...") qa_model = load_model_from_cache("qa_model") if qa_model is None: try: qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2") save_model_to_cache(qa_model, "qa_model") print("✅ QA model loaded successfully") except Exception as e: print(f"⚠️ Error loading QA model: {str(e)}") qa_model = None print("✅ All models loaded successfully") else: print("⚠️ Model loading skipped (LOAD_MODELS=False)") except Exception as e: print(f"⚠️ Error loading models: {str(e)}") # Instead of raising an error, set fallback behavior nlp = None summarizer = None embedding_model = None ner_model = None speech_to_text = None cuad_model = None cuad_tokenizer = None qa_model = None print("⚠️ Running with limited functionality due to model loading errors") def legal_chatbot(user_input, context): """Uses a real NLP model for legal Q&A.""" global chat_history chat_history.append({"role": "user", "content": user_input}) response = qa_model(question=user_input, context=context)["answer"] chat_history.append({"role": "assistant", "content": response}) return response def extract_text_from_pdf(pdf_file): """Extracts text from a PDF file using pdfplumber.""" try: # Suppress pdfplumber warnings about CropBox import logging logging.getLogger("pdfminer").setLevel(logging.ERROR) with pdfplumber.open(pdf_file) as pdf: print(f"Processing PDF with {len(pdf.pages)} pages") text = "" for i, page in enumerate(pdf.pages): page_text = page.extract_text() or "" text += page_text + "\n" if (i + 1) % 10 == 0: # Log progress every 10 pages print(f"Processed {i + 1} pages...") print(f"✅ PDF text extraction complete: {len(text)} characters extracted") return text.strip() if text else None except Exception as e: print(f"❌ PDF extraction error: {str(e)}") raise HTTPException(status_code=400, detail=f"PDF extraction failed: {str(e)}") def process_video_to_text(video_file_path): """Extract audio from video and convert to text.""" try: print(f"Processing video file at {video_file_path}") temp_audio_path = os.path.join("temp", "extracted_audio.wav") video = mp.VideoFileClip(video_file_path) video.audio.write_audiofile(temp_audio_path, codec='pcm_s16le') print(f"Audio extracted to {temp_audio_path}") result = speech_to_text(temp_audio_path) transcript = result["text"] print(f"Transcription completed: {len(transcript)} characters") if os.path.exists(temp_audio_path): os.remove(temp_audio_path) return transcript except Exception as e: print(f"Error in video processing: {str(e)}") raise HTTPException(status_code=400, detail=f"Video processing failed: {str(e)}") def process_audio_to_text(audio_file_path): """Process audio file and convert to text.""" try: print(f"Processing audio file at {audio_file_path}") result = speech_to_text(audio_file_path) transcript = result["text"] print(f"Transcription completed: {len(transcript)} characters") return transcript except Exception as e: print(f"Error in audio processing: {str(e)}") raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}") def extract_named_entities(text): """Extracts named entities from legal text.""" max_length = 10000 entities = [] for i in range(0, len(text), max_length): chunk = text[i:i+max_length] doc = nlp(chunk) entities.extend([{"entity": ent.text, "label": ent.label_} for ent in doc.ents]) return entities def analyze_risk(text): """Analyzes legal risk in the document using keyword-based analysis.""" risk_keywords = { "Liability": ["liability", "responsible", "responsibility", "legal obligation"], "Termination": ["termination", "breach", "contract end", "default"], "Indemnification": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"], "Payment Risk": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"], "Insurance": ["insurance", "coverage", "policy", "claims"], } risk_scores = {category: 0 for category in risk_keywords} lower_text = text.lower() for category, keywords in risk_keywords.items(): for keyword in keywords: risk_scores[category] += lower_text.count(keyword.lower()) return risk_scores def extract_context_for_risk_terms(text, risk_keywords, window=1): """ Extracts and summarizes the context around risk terms. """ doc = nlp(text) sentences = list(doc.sents) risk_contexts = {category: [] for category in risk_keywords} for i, sent in enumerate(sentences): sent_text_lower = sent.text.lower() for category, details in risk_keywords.items(): for keyword in details["keywords"]: if keyword.lower() in sent_text_lower: start_idx = max(0, i - window) end_idx = min(len(sentences), i + window + 1) context_chunk = " ".join([s.text for s in sentences[start_idx:end_idx]]) risk_contexts[category].append(context_chunk) summarized_contexts = {} for category, contexts in risk_contexts.items(): if contexts: combined_context = " ".join(contexts) try: summary_result = summarizer(combined_context, max_length=100, min_length=30, do_sample=False) summary = summary_result[0]['summary_text'] except Exception as e: summary = "Context summarization failed." summarized_contexts[category] = summary else: summarized_contexts[category] = "No contextual details found." return summarized_contexts def get_detailed_risk_info(text): """ Returns detailed risk information by merging risk scores with descriptive details and contextual summaries from the document. """ risk_details = { "Liability": { "description": "Liability refers to the legal responsibility for losses or damages.", "common_concerns": "Broad liability clauses may expose parties to unforeseen risks.", "recommendations": "Review and negotiate clear limits on liability.", "example": "E.g., 'The party shall be liable for direct damages due to negligence.'" }, "Termination": { "description": "Termination involves conditions under which a contract can be ended.", "common_concerns": "Unilateral termination rights or ambiguous conditions can be risky.", "recommendations": "Ensure termination clauses are balanced and include notice periods.", "example": "E.g., 'Either party may terminate the agreement with 30 days notice.'" }, "Indemnification": { "description": "Indemnification requires one party to compensate for losses incurred by the other.", "common_concerns": "Overly broad indemnification can shift significant risk.", "recommendations": "Negotiate clear limits and carve-outs where necessary.", "example": "E.g., 'The seller shall indemnify the buyer against claims from product defects.'" }, "Payment Risk": { "description": "Payment risk pertains to terms regarding fees, schedules, and reimbursements.", "common_concerns": "Vague payment terms or hidden charges increase risk.", "recommendations": "Clarify payment conditions and include penalties for delays.", "example": "E.g., 'Payments must be made within 30 days, with a 2% late fee thereafter.'" }, "Insurance": { "description": "Insurance risk covers the adequacy and scope of required coverage.", "common_concerns": "Insufficient insurance can leave parties exposed in unexpected events.", "recommendations": "Review insurance requirements to ensure they meet the risk profile.", "example": "E.g., 'The contractor must maintain liability insurance with at least $1M coverage.'" } } risk_scores = analyze_risk(text) risk_keywords_context = { "Liability": {"keywords": ["liability", "responsible", "responsibility", "legal obligation"]}, "Termination": {"keywords": ["termination", "breach", "contract end", "default"]}, "Indemnification": {"keywords": ["indemnification", "indemnify", "hold harmless", "compensate", "compensation"]}, "Payment Risk": {"keywords": ["payment", "terms", "reimbursement", "fee", "schedule", "invoice", "money"]}, "Insurance": {"keywords": ["insurance", "coverage", "policy", "claims"]} } risk_contexts = extract_context_for_risk_terms(text, risk_keywords_context, window=1) detailed_info = {} for risk_term, score in risk_scores.items(): if score > 0: info = risk_details.get(risk_term, {"description": "No details available."}) detailed_info[risk_term] = { "score": score, "description": info.get("description", ""), "common_concerns": info.get("common_concerns", ""), "recommendations": info.get("recommendations", ""), "example": info.get("example", ""), "context_summary": risk_contexts.get(risk_term, "No context available.") } return detailed_info def analyze_contract_clauses(text): """Analyzes contract clauses using the fine-tuned CUAD QA model.""" max_length = 512 step = 256 clauses_detected = [] try: clause_types = list(cuad_model.config.id2label.values()) except Exception as e: clause_types = [ "Obligations of Seller", "Governing Law", "Termination", "Indemnification", "Confidentiality", "Insurance", "Non-Compete", "Change of Control", "Assignment", "Warranty", "Limitation of Liability", "Arbitration", "IP Rights", "Force Majeure", "Revenue/Profit Sharing", "Audit Rights" ] chunks = [text[i:i+max_length] for i in range(0, len(text), step) if i+step < len(text)] for chunk in chunks: inputs = cuad_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): outputs = cuad_model(**inputs) predictions = torch.sigmoid(outputs.start_logits).cpu().numpy()[0] for idx, confidence in enumerate(predictions): if confidence > 0.5 and idx < len(clause_types): clauses_detected.append({"type": clause_types[idx], "confidence": float(confidence)}) aggregated_clauses = {} for clause in clauses_detected: clause_type = clause["type"] if clause_type not in aggregated_clauses or clause["confidence"] > aggregated_clauses[clause_type]["confidence"]: aggregated_clauses[clause_type] = clause return list(aggregated_clauses.values()) def summarize_text(text): """Summarizes legal text using the summarizer model.""" try: if summarizer is None: return "Basic analysis (NLP models not available)" # Split text into chunks if it's too long max_chunk_size = 1024 if len(text) > max_chunk_size: chunks = [text[i:i+max_chunk_size] for i in range(0, len(text), max_chunk_size)] summaries = [] for chunk in chunks: summary = summarizer(chunk, max_length=100, min_length=30, do_sample=False) summaries.append(summary[0]['summary_text']) return " ".join(summaries) else: summary = summarizer(text, max_length=100, min_length=30, do_sample=False) return summary[0]['summary_text'] except Exception as e: print(f"Error in summarization: {str(e)}") return "Summarization failed. Please try again later." @app.post("/analyze_legal_document") async def analyze_legal_document( file: UploadFile = File(...), current_user: User = Depends(get_current_active_user) ): """Analyzes a legal document (PDF) and returns insights based on subscription tier.""" try: # Calculate file size in MB file_content = await file.read() file_size_mb = len(file_content) / (1024 * 1024) # Check subscription access for document analysis check_subscription_access(current_user, "document_analysis", file_size_mb) print(f"Processing file: {file.filename}") # Create a temporary file to store the uploaded PDF with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp: tmp.write(file_content) tmp_path = tmp.name # Extract text from PDF text = extract_text_from_pdf(tmp_path) # Clean up the temporary file os.unlink(tmp_path) if not text: raise HTTPException(status_code=400, detail="Could not extract text from PDF") # Generate a task ID task_id = str(uuid.uuid4()) # Store document context for later retrieval store_document_context(task_id, text) # Basic analysis available to all tiers summary = summarize_text(text) entities = extract_named_entities(text) risk_scores = analyze_risk(text) # Prepare response based on subscription tier response = { "task_id": task_id, "summary": summary, "entities": entities, "risk_assessment": risk_scores, "subscription_tier": current_user.subscription_tier } # Add premium features if user has access if current_user.subscription_tier == "premium_tier": # Add detailed risk assessment if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]: detailed_risk = get_detailed_risk_info(text) response["detailed_risk_assessment"] = detailed_risk # Add contract clause analysis if "contract_clause_analysis" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]: clauses = analyze_contract_clauses(text) response["contract_clauses"] = clauses return response except Exception as e: print(f"Error analyzing document: {str(e)}") raise HTTPException(status_code=500, detail=f"Error analyzing document: {str(e)}") # Add this function to check resource limits based on subscription tier def check_resource_limits(user: User, resource_type: str, size_mb: float = None, count: int = 1): """ Check if the user has exceeded their subscription limits for a specific resource Args: user: The user making the request resource_type: Type of resource (document, video, audio) size_mb: Size of the resource in MB count: Number of resources being used (default 1) Returns: bool: True if within limits, raises HTTPException otherwise """ # Get the user's subscription tier limits tier = user.subscription_tier tier_limits = SUBSCRIPTION_TIERS.get(tier, SUBSCRIPTION_TIERS["free_tier"])["limits"] # Check size limits if size_mb is not None: if resource_type == "document" and size_mb > tier_limits["document_size_mb"]: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"Document size exceeds the {tier_limits['document_size_mb']}MB limit for your {tier} subscription" ) elif resource_type == "video" and size_mb > tier_limits["video_size_mb"]: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"Video size exceeds the {tier_limits['video_size_mb']}MB limit for your {tier} subscription" ) elif resource_type == "audio" and size_mb > tier_limits["audio_size_mb"]: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"Audio size exceeds the {tier_limits['audio_size_mb']}MB limit for your {tier} subscription" ) # Check monthly document count if resource_type == "document": # Get current month and year now = datetime.now() month, year = now.month, now.year # Check usage stats for current month conn = get_db_connection() cursor = conn.cursor() cursor.execute( "SELECT analyses_used FROM usage_stats WHERE user_id = ? AND month = ? AND year = ?", (user.id, month, year) ) result = cursor.fetchone() current_usage = result[0] if result else 0 # Check if adding this usage would exceed the limit if current_usage + count > tier_limits["documents_per_month"]: conn.close() raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"You have reached your monthly limit of {tier_limits['documents_per_month']} document analyses for your {tier} subscription" ) # Update usage stats if result: cursor.execute( "UPDATE usage_stats SET analyses_used = ? WHERE user_id = ? AND month = ? AND year = ?", (current_usage + count, user.id, month, year) ) else: usage_id = str(uuid.uuid4()) cursor.execute( "INSERT INTO usage_stats (id, user_id, month, year, analyses_used) VALUES (?, ?, ?, ?, ?)", (usage_id, user.id, month, year, count) ) conn.commit() conn.close() # Check if feature is available in the tier if resource_type == "video" and tier_limits["video_size_mb"] == 0: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"Video analysis is not available in your {tier} subscription" ) if resource_type == "audio" and tier_limits["audio_size_mb"] == 0: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail=f"Audio analysis is not available in your {tier} subscription" ) return True @app.post("/analyze_legal_video") async def analyze_legal_video( file: UploadFile = File(...), current_user: User = Depends(get_current_active_user) ): """Analyzes legal video by transcribing and analyzing the transcript.""" try: # Calculate file size in MB file_content = await file.read() file_size_mb = len(file_content) / (1024 * 1024) # Check subscription access for video analysis check_subscription_access(current_user, "video_analysis", file_size_mb) print(f"Processing video file: {file.filename}") # Create a temporary file to store the uploaded video with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp: tmp.write(file_content) tmp_path = tmp.name # Process video to extract transcript transcript = process_video_to_text(tmp_path) # Clean up the temporary file os.unlink(tmp_path) if not transcript: raise HTTPException(status_code=400, detail="Could not extract transcript from video") # Generate a task ID task_id = str(uuid.uuid4()) # Store document context for later retrieval store_document_context(task_id, transcript) # Basic analysis summary = summarize_text(transcript) entities = extract_named_entities(transcript) risk_scores = analyze_risk(transcript) # Prepare response response = { "task_id": task_id, "transcript": transcript, "summary": summary, "entities": entities, "risk_assessment": risk_scores, "subscription_tier": current_user.subscription_tier } # Add premium features if user has access if current_user.subscription_tier == "premium_tier": # Add detailed risk assessment if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]: detailed_risk = get_detailed_risk_info(transcript) response["detailed_risk_assessment"] = detailed_risk return response except Exception as e: print(f"Error analyzing video: {str(e)}") raise HTTPException(status_code=500, detail=f"Error analyzing video: {str(e)}") @app.post("/legal_chatbot/{task_id}") async def chat_with_document( task_id: str, question: str = Form(...), current_user: User = Depends(get_current_active_user) ): """Chat with a document using the legal chatbot.""" try: # Check if user has access to chatbot feature if "chatbot" not in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]: raise HTTPException( status_code=403, detail=f"The chatbot feature is not available in your {current_user.subscription_tier} subscription. Please upgrade to access this feature." ) # Check if document context exists context = load_document_context(task_id) if not context: raise HTTPException(status_code=404, detail="Document context not found. Please analyze a document first.") # Use the chatbot to answer the question answer = legal_chatbot(question, context) return {"answer": answer, "chat_history": chat_history} except Exception as e: print(f"Error in chatbot: {str(e)}") raise HTTPException(status_code=500, detail=f"Error in chatbot: {str(e)}") @app.get("/") async def root(): """Root endpoint that returns a welcome message.""" return HTMLResponse(content="""
Welcome to the Legal Document Analysis API. This API provides tools for analyzing legal documents, videos, and audio.
POST /analyze_legal_document - Analyze a legal document (PDF)
POST /analyze_legal_video - Analyze a legal video
POST /analyze_legal_audio - Analyze legal audio
POST /legal_chatbot/{task_id} - Chat with a document
POST /register - Register a new user
POST /token - Login to get an access token
GET /users/me - Get current user information
POST /subscribe/{tier} - Subscribe to a plan
For more details, visit the API documentation.
""") @app.post("/register", response_model=Token) async def register_new_user(user_data: UserCreate): """Register a new user with a free subscription""" try: success, result = register_user(user_data.email, user_data.password) if not success: raise HTTPException(status_code=400, detail=result) return {"access_token": result["access_token"], "token_type": "bearer"} except HTTPException: # Re-raise HTTP exceptions raise except Exception as e: print(f"Registration error: {str(e)}") raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}") @app.post("/token", response_model=Token) async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()): """Endpoint for OAuth2 token generation""" try: # Add debug logging logger.info(f"Token request for username: {form_data.username}") user = authenticate_user(form_data.username, form_data.password) if not user: logger.warning(f"Authentication failed for: {form_data.username}") raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token = create_access_token(user.id) if not access_token: logger.error(f"Failed to create access token for user: {user.id}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail="Could not create access token", ) logger.info(f"Login successful for: {form_data.username}") return {"access_token": access_token, "token_type": "bearer"} except Exception as e: logger.error(f"Token endpoint error: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Login error: {str(e)}", ) @app.get("/debug/token") async def debug_token(authorization: str = Header(None)): """Debug endpoint to check token validity""" try: if not authorization: return {"valid": False, "error": "No authorization header provided"} # Extract token from Authorization header scheme, token = authorization.split() if scheme.lower() != 'bearer': return {"valid": False, "error": "Not a bearer token"} # Log the token for debugging logger.info(f"Debugging token: {token[:10]}...") # Try to validate the token try: user = await get_current_active_user(token) return {"valid": True, "user_id": user.id, "email": user.email} except Exception as e: return {"valid": False, "error": str(e)} except Exception as e: return {"valid": False, "error": f"Token debug error: {str(e)}"} @app.post("/login") async def api_login(email: str, password: str): success, result = login_user(email, password) if not success: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail=result ) return result @app.get("/health") def health_check(): """Simple health check endpoint to verify the API is running""" return {"status": "ok", "message": "API is running"} @app.get("/users/me", response_model=User) async def read_users_me(current_user: User = Depends(get_current_active_user)): return current_user @app.post("/analyze_legal_audio") async def analyze_legal_audio( file: UploadFile = File(...), current_user: User = Depends(get_current_active_user) ): """Analyzes legal audio by transcribing and analyzing the transcript.""" try: # Calculate file size in MB file_content = await file.read() file_size_mb = len(file_content) / (1024 * 1024) # Check subscription access for audio analysis check_subscription_access(current_user, "audio_analysis", file_size_mb) print(f"Processing audio file: {file.filename}") # Create a temporary file to store the uploaded audio with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp: tmp.write(file_content) tmp_path = tmp.name # Process audio to extract transcript transcript = process_audio_to_text(tmp_path) # Clean up the temporary file os.unlink(tmp_path) if not transcript: raise HTTPException(status_code=400, detail="Could not extract transcript from audio") # Generate a task ID task_id = str(uuid.uuid4()) # Store document context for later retrieval store_document_context(task_id, transcript) # Basic analysis summary = summarize_text(transcript) entities = extract_named_entities(transcript) risk_scores = analyze_risk(transcript) # Prepare response response = { "task_id": task_id, "transcript": transcript, "summary": summary, "entities": entities, "risk_assessment": risk_scores, "subscription_tier": current_user.subscription_tier } # Add premium features if user has access if current_user.subscription_tier == "premium_tier": # Change from premium_tier to premium # Add detailed risk assessment if "detailed_risk_assessment" in SUBSCRIPTION_TIERS[current_user.subscription_tier]["features"]: detailed_risk = get_detailed_risk_info(transcript) response["detailed_risk_assessment"] = detailed_risk return response except Exception as e: print(f"Error analyzing audio: {str(e)}") raise HTTPException(status_code=500, detail=f"Error analyzing audio: {str(e)}") # Add these new endpoints before the if __name__ == "__main__" line @app.get("/users/me/subscription") async def get_user_subscription(current_user: User = Depends(get_current_active_user)): """Get the current user's subscription details""" try: # Get subscription details from database conn = get_db_connection() cursor = conn.cursor() # Get the most recent active subscription try: cursor.execute( "SELECT id, tier, status, created_at, expires_at, paypal_subscription_id FROM subscriptions " "WHERE user_id = ? AND status = 'active' ORDER BY created_at DESC LIMIT 1", (current_user.id,) ) subscription = cursor.fetchone() except sqlite3.OperationalError as e: # Handle missing tier column if "no such column: tier" in str(e): logger.warning("Subscriptions table missing 'tier' column. Returning default subscription.") subscription = None else: raise # Get subscription tiers with pricing directly from SUBSCRIPTION_TIERS subscription_tiers = { "free_tier": { "price": SUBSCRIPTION_TIERS["free_tier"]["price"], "currency": SUBSCRIPTION_TIERS["free_tier"]["currency"], "features": SUBSCRIPTION_TIERS["free_tier"]["features"] }, "standard_tier": { "price": SUBSCRIPTION_TIERS["standard_tier"]["price"], "currency": SUBSCRIPTION_TIERS["standard_tier"]["currency"], "features": SUBSCRIPTION_TIERS["standard_tier"]["features"] }, "premium_tier": { "price": SUBSCRIPTION_TIERS["premium_tier"]["price"], "currency": SUBSCRIPTION_TIERS["premium_tier"]["currency"], "features": SUBSCRIPTION_TIERS["premium_tier"]["features"] } } if subscription: sub_id, tier, status, created_at, expires_at, paypal_id = subscription result = { "id": sub_id, "tier": tier, "status": status, "created_at": created_at, "expires_at": expires_at, "paypal_subscription_id": paypal_id, "current_tier": current_user.subscription_tier, "subscription_tiers": subscription_tiers } else: result = { "tier": "free_tier", "status": "active", "current_tier": current_user.subscription_tier, "subscription_tiers": subscription_tiers } conn.close() return result except Exception as e: logger.error(f"Error getting subscription: {str(e)}") raise HTTPException(status_code=500, detail=f"Error getting subscription: {str(e)}") # Add this model definition before your endpoints class SubscriptionCreate(BaseModel): tier: str @app.post("/create_subscription") async def create_subscription( subscription: SubscriptionCreate, current_user: User = Depends(get_current_active_user) ): """Create a subscription for the current user""" try: # Log the request for debugging logger.info(f"Creating subscription for user {current_user.email} with tier {subscription.tier}") logger.info(f"Available tiers: {list(SUBSCRIPTION_TIERS.keys())}") # Validate tier valid_tiers = ["standard_tier", "premium_tier"] if subscription.tier not in valid_tiers: logger.warning(f"Invalid tier requested: {subscription.tier}") raise HTTPException(status_code=400, detail=f"Invalid tier: {subscription.tier}. Must be one of {valid_tiers}") # Create subscription logger.info(f"Calling create_user_subscription with email: {current_user.email}, tier: {subscription.tier}") success, result = create_user_subscription(current_user.email, subscription.tier) if not success: logger.error(f"Failed to create subscription: {result}") raise HTTPException(status_code=400, detail=result) logger.info(f"Subscription created successfully: {result}") return result except Exception as e: logger.error(f"Error creating subscription: {str(e)}") # Include the full traceback for better debugging import traceback logger.error(f"Traceback: {traceback.format_exc()}") raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}") @app.post("/subscribe/{tier}") async def subscribe_to_tier( tier: str, current_user: User = Depends(get_current_active_user) ): """Subscribe to a specific tier""" try: # Validate tier valid_tiers = ["standard_tier", "premium_tier"] if tier not in valid_tiers: raise HTTPException(status_code=400, detail=f"Invalid tier: {tier}. Must be one of {valid_tiers}") # Create subscription success, result = create_user_subscription(current_user.email, tier) if not success: raise HTTPException(status_code=400, detail=result) return result except Exception as e: logger.error(f"Error creating subscription: {str(e)}") raise HTTPException(status_code=500, detail=f"Error creating subscription: {str(e)}") @app.post("/subscription/create") async def create_subscription(request: Request, current_user: User = Depends(get_current_active_user)): """Create a subscription for the current user""" try: data = await request.json() tier = data.get("tier") if not tier: return JSONResponse( status_code=400, content={"detail": "Tier is required"} ) # Log the request for debugging logger.info(f"Creating subscription for user {current_user.email} with tier {tier}") # Create the subscription using the imported function directly success, result = create_user_subscription(current_user.email, tier) if success: # Make sure we're returning the approval_url in the response logger.info(f"Subscription created successfully: {result}") logger.info(f"Approval URL: {result.get('approval_url')}") return { "success": True, "data": { "approval_url": result["approval_url"], "subscription_id": result["subscription_id"], "tier": result["tier"] } } else: logger.error(f"Failed to create subscription: {result}") return JSONResponse( status_code=400, content={"success": False, "detail": result} ) except Exception as e: logger.error(f"Error creating subscription: {str(e)}") import traceback logger.error(f"Traceback: {traceback.format_exc()}") return JSONResponse( status_code=500, content={"success": False, "detail": f"Error creating subscription: {str(e)}"} ) @app.post("/admin/initialize-paypal-plans") async def initialize_paypal_plans(request: Request): """Initialize PayPal subscription plans""" try: # This should be protected with admin authentication in production plans = initialize_subscription_plans() if plans: return JSONResponse( status_code=200, content={"success": True, "plans": plans} ) else: return JSONResponse( status_code=500, content={"success": False, "detail": "Failed to initialize plans"} ) except Exception as e: logger.error(f"Error initializing PayPal plans: {str(e)}") return JSONResponse( status_code=500, content={"success": False, "detail": f"Error initializing plans: {str(e)}"} ) @app.post("/subscription/verify") async def verify_subscription(request: Request, current_user: User = Depends(get_current_active_user)): """Verify a subscription after payment""" try: data = await request.json() subscription_id = data.get("subscription_id") if not subscription_id: return JSONResponse( status_code=400, content={"success": False, "detail": "Subscription ID is required"} ) logger.info(f"Verifying subscription: {subscription_id}") # Verify the subscription with PayPal success, result = verify_paypal_subscription(subscription_id) if not success: logger.error(f"Subscription verification failed: {result}") return JSONResponse( status_code=400, content={"success": False, "detail": str(result)} ) # Update the user's subscription in the database conn = get_db_connection() cursor = conn.cursor() # Get the subscription details cursor.execute( "SELECT tier FROM subscriptions WHERE paypal_subscription_id = ?", (subscription_id,) ) subscription = cursor.fetchone() if not subscription: # This is a new subscription, get the tier from the PayPal response tier = "standard_tier" # Default to standard tier # You could extract the tier from the PayPal plan ID if needed # Create a new subscription record sub_id = str(uuid.uuid4()) start_date = datetime.now() expires_at = start_date + timedelta(days=30) cursor.execute( "INSERT INTO subscriptions (id, user_id, tier, status, created_at, expires_at, paypal_subscription_id) VALUES (?, ?, ?, ?, ?, ?, ?)", (sub_id, current_user.id, tier, "active", start_date, expires_at, subscription_id) ) else: # Update existing subscription tier = subscription[0] cursor.execute( "UPDATE subscriptions SET status = 'active' WHERE paypal_subscription_id = ?", (subscription_id,) ) # Update user's subscription tier cursor.execute( "UPDATE users SET subscription_tier = ? WHERE id = ?", (tier, current_user.id) ) conn.commit() conn.close() return JSONResponse( status_code=200, content={"success": True, "detail": "Subscription verified successfully"} ) except Exception as e: logger.error(f"Error verifying subscription: {str(e)}") return JSONResponse( status_code=500, content={"success": False, "detail": f"Error verifying subscription: {str(e)}"} ) @app.post("/subscription/webhook") async def subscription_webhook(request: Request): """Handle PayPal subscription webhooks""" try: payload = await request.json() success, result = handle_subscription_webhook(payload) if not success: logger.error(f"Webhook processing failed: {result}") return {"status": "error", "message": result} return {"status": "success", "message": result} except Exception as e: logger.error(f"Error processing webhook: {str(e)}") return {"status": "error", "message": f"Error processing webhook: {str(e)}"} @app.get("/subscription/verify/{subscription_id}") async def verify_subscription( subscription_id: str, current_user: User = Depends(get_current_active_user) ): """Verify a subscription payment and update user tier""" try: # Verify the subscription success, result = verify_subscription_payment(subscription_id) if not success: raise HTTPException(status_code=400, detail=f"Subscription verification failed: {result}") # Get the plan ID from the subscription to determine tier plan_id = result.get("plan_id", "") # Connect to DB to get the tier for this plan conn = get_db_connection() cursor = conn.cursor() cursor.execute("SELECT tier FROM paypal_plans WHERE plan_id = ?", (plan_id,)) tier_result = cursor.fetchone() conn.close() if not tier_result: raise HTTPException(status_code=400, detail="Could not determine subscription tier") tier = tier_result[0] # Update the user's subscription success, update_result = update_user_subscription(current_user.email, subscription_id, tier) if not success: raise HTTPException(status_code=500, detail=f"Failed to update subscription: {update_result}") return { "message": f"Successfully subscribed to {tier} tier", "subscription_id": subscription_id, "status": result.get("status", ""), "next_billing_time": result.get("billing_info", {}).get("next_billing_time", "") } except HTTPException: raise except Exception as e: print(f"Subscription verification error: {str(e)}") raise HTTPException(status_code=500, detail=f"Subscription verification failed: {str(e)}") @app.post("/webhook/paypal") async def paypal_webhook(request: Request): """Handle PayPal subscription webhooks""" try: payload = await request.json() logger.info(f"Received PayPal webhook: {payload.get('event_type', 'unknown event')}") # Process the webhook result = handle_subscription_webhook(payload) return {"status": "success", "message": "Webhook processed"} except Exception as e: logger.error(f"Webhook processing error: {str(e)}") # Return 200 even on error to acknowledge receipt to PayPal return {"status": "error", "message": str(e)} # Add this to your startup code @app.on_event("startup") async def startup_event(): """Initialize subscription plans on startup""" try: # Initialize PayPal subscription plans if needed # If you have an initialize_subscription_plans function in your paypal_integration.py, # you can call it here print("Application started successfully") except Exception as e: print(f"Error during startup: {str(e)}") if __name__ == "__main__": import uvicorn port = int(os.environ.get("PORT", 7860)) host = os.environ.get("HOST", "0.0.0.0") uvicorn.run("app:app", host=host, port=port, reload=True)