Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -193,11 +193,12 @@ try: | |
| 193 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 194 | 
             
                print("✅ Loading NLP models...")
         | 
| 195 |  | 
| 196 | 
            -
                #  | 
|  | |
| 197 | 
             
                summarizer = pipeline(
         | 
| 198 | 
             
                    "summarization",
         | 
| 199 | 
             
                    model="nsi319/legal-pegasus",
         | 
| 200 | 
            -
                    tokenizer= | 
| 201 | 
             
                    device=0 if torch.cuda.is_available() else -1
         | 
| 202 | 
             
                )
         | 
| 203 |  | 
| @@ -206,7 +207,6 @@ try: | |
| 206 | 
             
                speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
         | 
| 207 | 
             
                                          device_map="auto" if torch.cuda.is_available() else "cpu")
         | 
| 208 |  | 
| 209 | 
            -
                # Load or fine tune CUAD QA model
         | 
| 210 | 
             
                if os.path.exists("fine_tuned_legal_qa"):
         | 
| 211 | 
             
                    print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
         | 
| 212 | 
             
                    cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
         | 
|  | |
| 193 | 
             
                    nlp = spacy.load("en_core_web_sm")
         | 
| 194 | 
             
                print("✅ Loading NLP models...")
         | 
| 195 |  | 
| 196 | 
            +
                # Use the slow PegasusTokenizer explicitly
         | 
| 197 | 
            +
                from transformers import PegasusTokenizer
         | 
| 198 | 
             
                summarizer = pipeline(
         | 
| 199 | 
             
                    "summarization",
         | 
| 200 | 
             
                    model="nsi319/legal-pegasus",
         | 
| 201 | 
            +
                    tokenizer=PegasusTokenizer.from_pretrained("nsi319/legal-pegasus", use_fast=False),
         | 
| 202 | 
             
                    device=0 if torch.cuda.is_available() else -1
         | 
| 203 | 
             
                )
         | 
| 204 |  | 
|  | |
| 207 | 
             
                speech_to_text = pipeline("automatic-speech-recognition", model="openai/whisper-medium", chunk_length_s=30,
         | 
| 208 | 
             
                                          device_map="auto" if torch.cuda.is_available() else "cpu")
         | 
| 209 |  | 
|  | |
| 210 | 
             
                if os.path.exists("fine_tuned_legal_qa"):
         | 
| 211 | 
             
                    print("✅ Loading fine-tuned CUAD QA model from fine_tuned_legal_qa...")
         | 
| 212 | 
             
                    cuad_tokenizer = AutoTokenizer.from_pretrained("fine_tuned_legal_qa")
         |