ptmsc
commited on
Commit
·
0f7f5eb
1
Parent(s):
99959d8
call api to handle tryon
Browse files- app.py +81 -12
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import cv2
|
| 3 |
-
import
|
| 4 |
import mediapipe as mp
|
| 5 |
-
import
|
|
|
|
|
|
|
| 6 |
|
| 7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
| 8 |
|
|
@@ -55,12 +58,78 @@ def detect_pose(image):
|
|
| 55 |
return image
|
| 56 |
|
| 57 |
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
|
| 66 |
image_blocks = gr.Blocks().queue()
|
|
@@ -69,7 +138,7 @@ with image_blocks as demo:
|
|
| 69 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
-
human_img = gr.Image(type="
|
| 73 |
example = gr.Examples(
|
| 74 |
inputs=human_img,
|
| 75 |
examples_per_page=10,
|
|
@@ -77,7 +146,7 @@ with image_blocks as demo:
|
|
| 77 |
)
|
| 78 |
|
| 79 |
with gr.Column():
|
| 80 |
-
garm_img = gr.Image(label="Garment", type="
|
| 81 |
example = gr.Examples(
|
| 82 |
inputs=garm_img,
|
| 83 |
examples_per_page=8,
|
|
@@ -89,6 +158,6 @@ with image_blocks as demo:
|
|
| 89 |
try_button = gr.Button(value="Try-on", variant='primary')
|
| 90 |
|
| 91 |
# Linking the button to the processing function
|
| 92 |
-
try_button.click(fn=process_image, inputs=human_img, outputs=image_out)
|
| 93 |
|
| 94 |
-
image_blocks.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
import cv2
|
| 4 |
+
import gradio as gr
|
| 5 |
import mediapipe as mp
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from gradio_client import Client, handle_file
|
| 9 |
|
| 10 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
| 11 |
|
|
|
|
| 58 |
return image
|
| 59 |
|
| 60 |
|
| 61 |
+
def align_clothing(body_img, clothing_img):
|
| 62 |
+
image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB)
|
| 63 |
+
result = pose.process(image_rgb)
|
| 64 |
+
output = body_img.copy()
|
| 65 |
|
| 66 |
+
if result.pose_landmarks:
|
| 67 |
+
h, w, _ = output.shape
|
| 68 |
+
|
| 69 |
+
# Extract key points
|
| 70 |
+
def get_point(landmark_id):
|
| 71 |
+
lm = result.pose_landmarks.landmark[landmark_id]
|
| 72 |
+
return int(lm.x * w), int(lm.y * h)
|
| 73 |
+
|
| 74 |
+
left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER)
|
| 75 |
+
right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER)
|
| 76 |
+
left_hip = get_point(mp_pose_landmark.LEFT_HIP)
|
| 77 |
+
right_hip = get_point(mp_pose_landmark.RIGHT_HIP)
|
| 78 |
+
|
| 79 |
+
# Destination box (torso region)
|
| 80 |
+
dst_pts = np.array([
|
| 81 |
+
left_shoulder,
|
| 82 |
+
right_shoulder,
|
| 83 |
+
right_hip,
|
| 84 |
+
left_hip
|
| 85 |
+
], dtype=np.float32)
|
| 86 |
+
|
| 87 |
+
# Source box (clothing image corners)
|
| 88 |
+
src_h, src_w = clothing_img.shape[:2]
|
| 89 |
+
src_pts = np.array([
|
| 90 |
+
[0, 0],
|
| 91 |
+
[src_w, 0],
|
| 92 |
+
[src_w, src_h],
|
| 93 |
+
[0, src_h]
|
| 94 |
+
], dtype=np.float32)
|
| 95 |
+
|
| 96 |
+
# Compute perspective transform and warp
|
| 97 |
+
matrix = cv2.getPerspectiveTransform(src_pts, dst_pts)
|
| 98 |
+
warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT)
|
| 99 |
+
|
| 100 |
+
# Handle transparency
|
| 101 |
+
if clothing_img.shape[2] == 4:
|
| 102 |
+
alpha = warped_clothing[:, :, 3] / 255.0
|
| 103 |
+
for c in range(3):
|
| 104 |
+
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
|
| 105 |
+
else:
|
| 106 |
+
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)
|
| 107 |
+
|
| 108 |
+
return output
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def process_image(human_img_path, garm_img_path):
|
| 112 |
+
client = Client("franciszzj/Leffa")
|
| 113 |
+
|
| 114 |
+
result = client.predict(
|
| 115 |
+
src_image_path=handle_file(human_img_path),
|
| 116 |
+
ref_image_path=handle_file(garm_img_path),
|
| 117 |
+
ref_acceleration=False,
|
| 118 |
+
step=30,
|
| 119 |
+
scale=2.5,
|
| 120 |
+
seed=42,
|
| 121 |
+
vt_model_type="viton_hd",
|
| 122 |
+
vt_garment_type="upper_body",
|
| 123 |
+
vt_repaint=False,
|
| 124 |
+
api_name="/leffa_predict_vt"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
print(result)
|
| 128 |
+
generated_image_path = result[0]
|
| 129 |
+
print("generated_image_path" + generated_image_path)
|
| 130 |
+
generated_image = Image.open(generated_image_path)
|
| 131 |
+
|
| 132 |
+
return generated_image
|
| 133 |
|
| 134 |
|
| 135 |
image_blocks = gr.Blocks().queue()
|
|
|
|
| 138 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
| 139 |
with gr.Row():
|
| 140 |
with gr.Column():
|
| 141 |
+
human_img = gr.Image(type="filepath", label='Human', interactive=True)
|
| 142 |
example = gr.Examples(
|
| 143 |
inputs=human_img,
|
| 144 |
examples_per_page=10,
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
with gr.Column():
|
| 149 |
+
garm_img = gr.Image(label="Garment", type="filepath", interactive=True)
|
| 150 |
example = gr.Examples(
|
| 151 |
inputs=garm_img,
|
| 152 |
examples_per_page=8,
|
|
|
|
| 158 |
try_button = gr.Button(value="Try-on", variant='primary')
|
| 159 |
|
| 160 |
# Linking the button to the processing function
|
| 161 |
+
try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)
|
| 162 |
|
| 163 |
+
image_blocks.launch(show_error=True)
|
requirements.txt
CHANGED
|
@@ -3,4 +3,5 @@ numpy==1.26.4
|
|
| 3 |
opencv-contrib-python==4.11.0.86
|
| 4 |
opencv-python==4.11.0.86
|
| 5 |
gradio==5.23.3
|
| 6 |
-
gradio_client==1.8.0
|
|
|
|
|
|
| 3 |
opencv-contrib-python==4.11.0.86
|
| 4 |
opencv-python==4.11.0.86
|
| 5 |
gradio==5.23.3
|
| 6 |
+
gradio_client==1.8.0
|
| 7 |
+
|