|
import gradio as gr |
|
import cv2 |
|
import numpy as np |
|
import mediapipe as mp |
|
|
|
|
|
mp_pose = mp.solutions.pose |
|
pose = mp_pose.Pose(static_image_mode=True) |
|
mp_drawing = mp.solutions.drawing_utils |
|
mp_pose_landmark = mp_pose.PoseLandmark |
|
|
|
def detect_pose(image): |
|
|
|
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
result = pose.process(image_rgb) |
|
|
|
keypoints = {} |
|
|
|
if result.pose_landmarks: |
|
|
|
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) |
|
|
|
|
|
height, width, _ = image.shape |
|
|
|
|
|
landmark_indices = { |
|
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, |
|
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, |
|
'left_hip': mp_pose_landmark.LEFT_HIP, |
|
'right_hip': mp_pose_landmark.RIGHT_HIP |
|
} |
|
|
|
for name, index in landmark_indices.items(): |
|
lm = result.pose_landmarks.landmark[index] |
|
x, y = int(lm.x * width), int(lm.y * height) |
|
keypoints[name] = (x, y) |
|
|
|
|
|
cv2.circle(image, (x, y), 5, (0, 255, 0), -1) |
|
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) |
|
|
|
return image, keypoints |
|
|
|
|
|
iface = gr.Interface( |
|
fn=detect_pose, |
|
inputs=gr.Image(type="numpy", label="Upload Full-Body Image"), |
|
outputs=[ |
|
gr.Image(type="numpy", label="Pose Visualization"), |
|
gr.JSON(label="Extracted Keypoints") |
|
], |
|
title="Virtual Try-On - Pose Detection", |
|
description="Detects body keypoints using MediaPipe Pose and visualizes them. Shoulders and hips are labeled." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |