sd
Browse files- backend/utils_sd.py +1419 -0
backend/utils_sd.py
ADDED
|
@@ -0,0 +1,1419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import imp
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
+
import copy
|
| 9 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict, Any
|
| 10 |
+
from tqdm.notebook import tqdm
|
| 11 |
+
from diffusers.utils import BaseOutput, logging
|
| 12 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
| 13 |
+
from diffusers.models.unet_2d_blocks import (
|
| 14 |
+
CrossAttnDownBlock2D,
|
| 15 |
+
CrossAttnUpBlock2D,
|
| 16 |
+
DownBlock2D,
|
| 17 |
+
UNetMidBlock2DCrossAttn,
|
| 18 |
+
UpBlock2D,
|
| 19 |
+
get_down_block,
|
| 20 |
+
get_up_block,
|
| 21 |
+
)
|
| 22 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput, logger
|
| 23 |
+
from copy import deepcopy
|
| 24 |
+
import json
|
| 25 |
+
|
| 26 |
+
import inspect
|
| 27 |
+
import os
|
| 28 |
+
import warnings
|
| 29 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 30 |
+
|
| 31 |
+
import numpy as np
|
| 32 |
+
import PIL.Image
|
| 33 |
+
import torch
|
| 34 |
+
import torch.nn.functional as F
|
| 35 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 36 |
+
|
| 37 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 38 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
| 39 |
+
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
| 40 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 41 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
| 42 |
+
|
| 43 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
| 44 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 45 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
| 46 |
+
from tqdm import tqdm
|
| 47 |
+
from controlnet_aux import HEDdetector, OpenposeDetector
|
| 48 |
+
import time
|
| 49 |
+
|
| 50 |
+
def seed_everything(seed):
|
| 51 |
+
torch.manual_seed(seed)
|
| 52 |
+
torch.cuda.manual_seed(seed)
|
| 53 |
+
random.seed(seed)
|
| 54 |
+
np.random.seed(seed)
|
| 55 |
+
|
| 56 |
+
def get_promptls(prompt_path):
|
| 57 |
+
with open(prompt_path) as f:
|
| 58 |
+
prompt_ls = json.load(f)
|
| 59 |
+
prompt_ls = [prompt['caption'].replace('/','_') for prompt in prompt_ls]
|
| 60 |
+
return prompt_ls
|
| 61 |
+
|
| 62 |
+
def load_512(image_path, left=0, right=0, top=0, bottom=0):
|
| 63 |
+
# print(image_path)
|
| 64 |
+
if type(image_path) is str:
|
| 65 |
+
image = np.array(Image.open(image_path))
|
| 66 |
+
if image.ndim>3:
|
| 67 |
+
image = image[:,:,:3]
|
| 68 |
+
elif image.ndim == 2:
|
| 69 |
+
image = image.reshape(image.shape[0], image.shape[1],1).astype('uint8')
|
| 70 |
+
else:
|
| 71 |
+
image = image_path
|
| 72 |
+
h, w, c = image.shape
|
| 73 |
+
left = min(left, w-1)
|
| 74 |
+
right = min(right, w - left - 1)
|
| 75 |
+
top = min(top, h - left - 1)
|
| 76 |
+
bottom = min(bottom, h - top - 1)
|
| 77 |
+
image = image[top:h-bottom, left:w-right]
|
| 78 |
+
h, w, c = image.shape
|
| 79 |
+
if h < w:
|
| 80 |
+
offset = (w - h) // 2
|
| 81 |
+
image = image[:, offset:offset + h]
|
| 82 |
+
elif w < h:
|
| 83 |
+
offset = (h - w) // 2
|
| 84 |
+
image = image[offset:offset + w]
|
| 85 |
+
image = np.array(Image.fromarray(image).resize((512, 512)))
|
| 86 |
+
return image
|
| 87 |
+
|
| 88 |
+
def get_canny(image_path):
|
| 89 |
+
image = load_512(
|
| 90 |
+
image_path
|
| 91 |
+
)
|
| 92 |
+
image = np.array(image)
|
| 93 |
+
|
| 94 |
+
# get canny image
|
| 95 |
+
image = cv2.Canny(image, 100, 200)
|
| 96 |
+
image = image[:, :, None]
|
| 97 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 98 |
+
canny_image = Image.fromarray(image)
|
| 99 |
+
return canny_image
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_scribble(image_path, hed):
|
| 103 |
+
image = load_512(
|
| 104 |
+
image_path
|
| 105 |
+
)
|
| 106 |
+
image = hed(image, scribble=True)
|
| 107 |
+
|
| 108 |
+
return image
|
| 109 |
+
|
| 110 |
+
def get_cocoimages(prompt_path):
|
| 111 |
+
data_ls = []
|
| 112 |
+
with open(prompt_path) as f:
|
| 113 |
+
prompt_ls = json.load(f)
|
| 114 |
+
img_path = 'COCO2017-val/val2017'
|
| 115 |
+
for prompt in tqdm(prompt_ls):
|
| 116 |
+
caption = prompt['caption'].replace('/','_')
|
| 117 |
+
image_id = str(prompt['image_id'])
|
| 118 |
+
image_id = (12-len(image_id))*'0' + image_id+'.jpg'
|
| 119 |
+
image_path = os.path.join(img_path, image_id)
|
| 120 |
+
try:
|
| 121 |
+
image = get_canny(image_path)
|
| 122 |
+
except:
|
| 123 |
+
continue
|
| 124 |
+
curr_data = {'image':image, 'prompt':caption}
|
| 125 |
+
data_ls.append(curr_data)
|
| 126 |
+
return data_ls
|
| 127 |
+
|
| 128 |
+
def get_cocoimages2(prompt_path):
|
| 129 |
+
"""scribble condition
|
| 130 |
+
"""
|
| 131 |
+
data_ls = []
|
| 132 |
+
with open(prompt_path) as f:
|
| 133 |
+
prompt_ls = json.load(f)
|
| 134 |
+
img_path = 'COCO2017-val/val2017'
|
| 135 |
+
hed = HEDdetector.from_pretrained('ControlNet/detector_weights/annotator', filename='network-bsds500.pth')
|
| 136 |
+
for prompt in tqdm(prompt_ls):
|
| 137 |
+
caption = prompt['caption'].replace('/','_')
|
| 138 |
+
image_id = str(prompt['image_id'])
|
| 139 |
+
image_id = (12-len(image_id))*'0' + image_id+'.jpg'
|
| 140 |
+
image_path = os.path.join(img_path, image_id)
|
| 141 |
+
try:
|
| 142 |
+
image = get_scribble(image_path,hed)
|
| 143 |
+
except:
|
| 144 |
+
continue
|
| 145 |
+
curr_data = {'image':image, 'prompt':caption}
|
| 146 |
+
data_ls.append(curr_data)
|
| 147 |
+
return data_ls
|
| 148 |
+
|
| 149 |
+
def warpped_feature(sample, step):
|
| 150 |
+
"""
|
| 151 |
+
sample: batch_size*dim*h*w, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size
|
| 152 |
+
step: timestep span
|
| 153 |
+
"""
|
| 154 |
+
bs, dim, h, w = sample.shape
|
| 155 |
+
uncond_fea, cond_fea = sample.chunk(2)
|
| 156 |
+
uncond_fea = uncond_fea.repeat(step,1,1,1) # (step * bs//2) * dim * h *w
|
| 157 |
+
cond_fea = cond_fea.repeat(step,1,1,1) # (step * bs//2) * dim * h *w
|
| 158 |
+
return torch.cat([uncond_fea, cond_fea])
|
| 159 |
+
|
| 160 |
+
def warpped_skip_feature(block_samples, step):
|
| 161 |
+
down_block_res_samples = []
|
| 162 |
+
for sample in block_samples:
|
| 163 |
+
sample_expand = warpped_feature(sample, step)
|
| 164 |
+
down_block_res_samples.append(sample_expand)
|
| 165 |
+
return tuple(down_block_res_samples)
|
| 166 |
+
|
| 167 |
+
def warpped_text_emb(text_emb, step):
|
| 168 |
+
"""
|
| 169 |
+
text_emb: batch_size*77*768, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size
|
| 170 |
+
step: timestep span
|
| 171 |
+
"""
|
| 172 |
+
bs, token_len, dim = text_emb.shape
|
| 173 |
+
uncond_fea, cond_fea = text_emb.chunk(2)
|
| 174 |
+
uncond_fea = uncond_fea.repeat(step,1,1) # (step * bs//2) * 77 *768
|
| 175 |
+
cond_fea = cond_fea.repeat(step,1,1) # (step * bs//2) * 77 * 768
|
| 176 |
+
return torch.cat([uncond_fea, cond_fea]) # (step*bs) * 77 *768
|
| 177 |
+
|
| 178 |
+
def warpped_timestep(timesteps, bs):
|
| 179 |
+
"""
|
| 180 |
+
timestpes: list, such as [981, 961, 941]
|
| 181 |
+
"""
|
| 182 |
+
semi_bs = bs//2
|
| 183 |
+
ts = []
|
| 184 |
+
for timestep in timesteps:
|
| 185 |
+
timestep = timestep[None]
|
| 186 |
+
texp = timestep.expand(semi_bs)
|
| 187 |
+
ts.append(texp)
|
| 188 |
+
timesteps = torch.cat(ts)
|
| 189 |
+
return timesteps.repeat(2,1).reshape(-1)
|
| 190 |
+
|
| 191 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
| 192 |
+
"""
|
| 193 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
| 194 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
| 195 |
+
"""
|
| 196 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
| 197 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
| 198 |
+
# rescale the results from guidance (fixes overexposure)
|
| 199 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
| 200 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
| 201 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
| 202 |
+
return noise_cfg
|
| 203 |
+
|
| 204 |
+
def register_normal_pipeline(pipe):
|
| 205 |
+
def new_call(self):
|
| 206 |
+
@torch.no_grad()
|
| 207 |
+
def call(
|
| 208 |
+
prompt: Union[str, List[str]] = None,
|
| 209 |
+
height: Optional[int] = None,
|
| 210 |
+
width: Optional[int] = None,
|
| 211 |
+
num_inference_steps: int = 50,
|
| 212 |
+
guidance_scale: float = 7.5,
|
| 213 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 214 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 215 |
+
eta: float = 0.0,
|
| 216 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 217 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 218 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 219 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 220 |
+
output_type: Optional[str] = "pil",
|
| 221 |
+
return_dict: bool = True,
|
| 222 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 223 |
+
guidance_rescale: float = 0.0,
|
| 224 |
+
clip_skip: Optional[int] = None,
|
| 225 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 226 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 227 |
+
**kwargs,
|
| 228 |
+
):
|
| 229 |
+
|
| 230 |
+
callback = kwargs.pop("callback", None)
|
| 231 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# 0. Default height and width to unet
|
| 235 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 236 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 237 |
+
# to deal with lora scaling and other possible forward hooks
|
| 238 |
+
|
| 239 |
+
# 1. Check inputs. Raise error if not correct
|
| 240 |
+
self.check_inputs(
|
| 241 |
+
prompt,
|
| 242 |
+
height,
|
| 243 |
+
width,
|
| 244 |
+
callback_steps,
|
| 245 |
+
negative_prompt,
|
| 246 |
+
prompt_embeds,
|
| 247 |
+
negative_prompt_embeds,
|
| 248 |
+
callback_on_step_end_tensor_inputs,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self._guidance_scale = guidance_scale
|
| 252 |
+
self._guidance_rescale = guidance_rescale
|
| 253 |
+
self._clip_skip = clip_skip
|
| 254 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 255 |
+
|
| 256 |
+
# 2. Define call parameters
|
| 257 |
+
if prompt is not None and isinstance(prompt, str):
|
| 258 |
+
batch_size = 1
|
| 259 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 260 |
+
batch_size = len(prompt)
|
| 261 |
+
else:
|
| 262 |
+
batch_size = prompt_embeds.shape[0]
|
| 263 |
+
|
| 264 |
+
device = self._execution_device
|
| 265 |
+
|
| 266 |
+
# 3. Encode input prompt
|
| 267 |
+
lora_scale = (
|
| 268 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 272 |
+
prompt,
|
| 273 |
+
device,
|
| 274 |
+
num_images_per_prompt,
|
| 275 |
+
self.do_classifier_free_guidance,
|
| 276 |
+
negative_prompt,
|
| 277 |
+
prompt_embeds=prompt_embeds,
|
| 278 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 279 |
+
lora_scale=lora_scale,
|
| 280 |
+
clip_skip=self.clip_skip,
|
| 281 |
+
)
|
| 282 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 283 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 284 |
+
# to avoid doing two forward passes
|
| 285 |
+
if self.do_classifier_free_guidance:
|
| 286 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 287 |
+
|
| 288 |
+
# 4. Prepare timesteps
|
| 289 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 290 |
+
timesteps = self.scheduler.timesteps
|
| 291 |
+
|
| 292 |
+
# 5. Prepare latent variables
|
| 293 |
+
num_channels_latents = self.unet.config.in_channels
|
| 294 |
+
latents = self.prepare_latents(
|
| 295 |
+
batch_size * num_images_per_prompt,
|
| 296 |
+
num_channels_latents,
|
| 297 |
+
height,
|
| 298 |
+
width,
|
| 299 |
+
prompt_embeds.dtype,
|
| 300 |
+
device,
|
| 301 |
+
generator,
|
| 302 |
+
latents,
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 306 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 307 |
+
|
| 308 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
| 309 |
+
timestep_cond = None
|
| 310 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 311 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 312 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 313 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 314 |
+
).to(device=device, dtype=latents.dtype)
|
| 315 |
+
|
| 316 |
+
# 7. Denoising loop
|
| 317 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 318 |
+
self._num_timesteps = len(timesteps)
|
| 319 |
+
init_latents = latents.detach().clone()
|
| 320 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 321 |
+
for i, t in enumerate(timesteps):
|
| 322 |
+
if t/1000 < 0.5:
|
| 323 |
+
latents = latents + 0.003*init_latents
|
| 324 |
+
setattr(self.unet, 'order', i)
|
| 325 |
+
# expand the latents if we are doing classifier free guidance
|
| 326 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 327 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 328 |
+
|
| 329 |
+
# predict the noise residual
|
| 330 |
+
noise_pred = self.unet(
|
| 331 |
+
latent_model_input,
|
| 332 |
+
t,
|
| 333 |
+
encoder_hidden_states=prompt_embeds,
|
| 334 |
+
timestep_cond=timestep_cond,
|
| 335 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 336 |
+
return_dict=False,
|
| 337 |
+
)[0]
|
| 338 |
+
|
| 339 |
+
# perform guidance
|
| 340 |
+
if self.do_classifier_free_guidance:
|
| 341 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 342 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 343 |
+
|
| 344 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
| 345 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 346 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
| 347 |
+
|
| 348 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 349 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
| 350 |
+
|
| 351 |
+
if callback_on_step_end is not None:
|
| 352 |
+
callback_kwargs = {}
|
| 353 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 354 |
+
callback_kwargs[k] = locals()[k]
|
| 355 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 356 |
+
|
| 357 |
+
latents = callback_outputs.pop("latents", latents)
|
| 358 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 359 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 360 |
+
|
| 361 |
+
# call the callback, if provided
|
| 362 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 363 |
+
progress_bar.update()
|
| 364 |
+
if callback is not None and i % callback_steps == 0:
|
| 365 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 366 |
+
callback(step_idx, t, latents)
|
| 367 |
+
|
| 368 |
+
if not output_type == "latent":
|
| 369 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
| 370 |
+
0
|
| 371 |
+
]
|
| 372 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 373 |
+
else:
|
| 374 |
+
image = latents
|
| 375 |
+
has_nsfw_concept = None
|
| 376 |
+
|
| 377 |
+
if has_nsfw_concept is None:
|
| 378 |
+
do_denormalize = [True] * image.shape[0]
|
| 379 |
+
else:
|
| 380 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 381 |
+
|
| 382 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 383 |
+
|
| 384 |
+
# Offload all models
|
| 385 |
+
self.maybe_free_model_hooks()
|
| 386 |
+
|
| 387 |
+
if not return_dict:
|
| 388 |
+
return (image, has_nsfw_concept)
|
| 389 |
+
|
| 390 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 391 |
+
return call
|
| 392 |
+
pipe.call = new_call(pipe)
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
def register_parallel_pipeline(pipe):
|
| 396 |
+
def new_call(self):
|
| 397 |
+
@torch.no_grad()
|
| 398 |
+
def call(
|
| 399 |
+
prompt: Union[str, List[str]] = None,
|
| 400 |
+
height: Optional[int] = None,
|
| 401 |
+
width: Optional[int] = None,
|
| 402 |
+
num_inference_steps: int = 50,
|
| 403 |
+
guidance_scale: float = 7.5,
|
| 404 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 405 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 406 |
+
eta: float = 0.0,
|
| 407 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 408 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 409 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 410 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 411 |
+
output_type: Optional[str] = "pil",
|
| 412 |
+
return_dict: bool = True,
|
| 413 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 414 |
+
guidance_rescale: float = 0.0,
|
| 415 |
+
clip_skip: Optional[int] = None,
|
| 416 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 417 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 418 |
+
**kwargs,
|
| 419 |
+
):
|
| 420 |
+
|
| 421 |
+
callback = kwargs.pop("callback", None)
|
| 422 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# 0. Default height and width to unet
|
| 426 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 427 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 428 |
+
# to deal with lora scaling and other possible forward hooks
|
| 429 |
+
|
| 430 |
+
# 1. Check inputs. Raise error if not correct
|
| 431 |
+
self.check_inputs(
|
| 432 |
+
prompt,
|
| 433 |
+
height,
|
| 434 |
+
width,
|
| 435 |
+
callback_steps,
|
| 436 |
+
negative_prompt,
|
| 437 |
+
prompt_embeds,
|
| 438 |
+
negative_prompt_embeds,
|
| 439 |
+
callback_on_step_end_tensor_inputs,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
self._guidance_scale = guidance_scale
|
| 443 |
+
self._guidance_rescale = guidance_rescale
|
| 444 |
+
self._clip_skip = clip_skip
|
| 445 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
| 446 |
+
|
| 447 |
+
# 2. Define call parameters
|
| 448 |
+
if prompt is not None and isinstance(prompt, str):
|
| 449 |
+
batch_size = 1
|
| 450 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 451 |
+
batch_size = len(prompt)
|
| 452 |
+
else:
|
| 453 |
+
batch_size = prompt_embeds.shape[0]
|
| 454 |
+
|
| 455 |
+
device = self._execution_device
|
| 456 |
+
|
| 457 |
+
# 3. Encode input prompt
|
| 458 |
+
lora_scale = (
|
| 459 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 463 |
+
prompt,
|
| 464 |
+
device,
|
| 465 |
+
num_images_per_prompt,
|
| 466 |
+
self.do_classifier_free_guidance,
|
| 467 |
+
negative_prompt,
|
| 468 |
+
prompt_embeds=prompt_embeds,
|
| 469 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 470 |
+
lora_scale=lora_scale,
|
| 471 |
+
clip_skip=self.clip_skip,
|
| 472 |
+
)
|
| 473 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 474 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
| 475 |
+
# to avoid doing two forward passes
|
| 476 |
+
if self.do_classifier_free_guidance:
|
| 477 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 478 |
+
|
| 479 |
+
# 4. Prepare timesteps
|
| 480 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 481 |
+
timesteps = self.scheduler.timesteps
|
| 482 |
+
|
| 483 |
+
# 5. Prepare latent variables
|
| 484 |
+
num_channels_latents = self.unet.config.in_channels
|
| 485 |
+
latents = self.prepare_latents(
|
| 486 |
+
batch_size * num_images_per_prompt,
|
| 487 |
+
num_channels_latents,
|
| 488 |
+
height,
|
| 489 |
+
width,
|
| 490 |
+
prompt_embeds.dtype,
|
| 491 |
+
device,
|
| 492 |
+
generator,
|
| 493 |
+
latents,
|
| 494 |
+
)
|
| 495 |
+
|
| 496 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 497 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 498 |
+
|
| 499 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
| 500 |
+
timestep_cond = None
|
| 501 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
| 502 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
| 503 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
| 504 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
| 505 |
+
).to(device=device, dtype=latents.dtype)
|
| 506 |
+
|
| 507 |
+
# 7. Denoising loop
|
| 508 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 509 |
+
self._num_timesteps = len(timesteps)
|
| 510 |
+
init_latents = latents.detach().clone()
|
| 511 |
+
#-------------------------------------------------------
|
| 512 |
+
all_steps = len(self.scheduler.timesteps)
|
| 513 |
+
curr_span = 1
|
| 514 |
+
curr_step = 0
|
| 515 |
+
|
| 516 |
+
# st = time.time()
|
| 517 |
+
idx = 1
|
| 518 |
+
keytime = [0,1,2,3,5,10,15,25,35]
|
| 519 |
+
keytime.append(all_steps)
|
| 520 |
+
while curr_step<all_steps:
|
| 521 |
+
refister_time(self.unet, curr_step)
|
| 522 |
+
|
| 523 |
+
merge_span = curr_span
|
| 524 |
+
if merge_span>0:
|
| 525 |
+
time_ls = []
|
| 526 |
+
for i in range(curr_step, curr_step+merge_span):
|
| 527 |
+
if i<all_steps:
|
| 528 |
+
time_ls.append(self.scheduler.timesteps[i])
|
| 529 |
+
else:
|
| 530 |
+
break
|
| 531 |
+
|
| 532 |
+
##--------------------------------
|
| 533 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 534 |
+
|
| 535 |
+
# predict the noise residual
|
| 536 |
+
noise_pred = self.unet(
|
| 537 |
+
latent_model_input,
|
| 538 |
+
time_ls,
|
| 539 |
+
encoder_hidden_states=prompt_embeds,
|
| 540 |
+
timestep_cond=timestep_cond,
|
| 541 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
| 542 |
+
return_dict=False,
|
| 543 |
+
)[0]
|
| 544 |
+
|
| 545 |
+
# perform guidance
|
| 546 |
+
if self.do_classifier_free_guidance:
|
| 547 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 548 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 549 |
+
|
| 550 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
| 551 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
| 552 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
| 553 |
+
|
| 554 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 555 |
+
|
| 556 |
+
step_span = len(time_ls)
|
| 557 |
+
bs = noise_pred.shape[0]
|
| 558 |
+
bs_perstep = bs//step_span
|
| 559 |
+
|
| 560 |
+
denoised_latent = latents
|
| 561 |
+
for i, timestep in enumerate(time_ls):
|
| 562 |
+
if timestep/1000 < 0.5:
|
| 563 |
+
denoised_latent = denoised_latent + 0.003*init_latents
|
| 564 |
+
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
|
| 565 |
+
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0]
|
| 566 |
+
|
| 567 |
+
latents = denoised_latent
|
| 568 |
+
##----------------------------------------
|
| 569 |
+
curr_step += curr_span
|
| 570 |
+
idx += 1
|
| 571 |
+
|
| 572 |
+
if curr_step<all_steps:
|
| 573 |
+
curr_span = keytime[idx] - keytime[idx-1]
|
| 574 |
+
|
| 575 |
+
|
| 576 |
+
if not output_type == "latent":
|
| 577 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
| 578 |
+
0
|
| 579 |
+
]
|
| 580 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 581 |
+
else:
|
| 582 |
+
image = latents
|
| 583 |
+
has_nsfw_concept = None
|
| 584 |
+
|
| 585 |
+
if has_nsfw_concept is None:
|
| 586 |
+
do_denormalize = [True] * image.shape[0]
|
| 587 |
+
else:
|
| 588 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 589 |
+
|
| 590 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 591 |
+
|
| 592 |
+
# Offload all models
|
| 593 |
+
self.maybe_free_model_hooks()
|
| 594 |
+
|
| 595 |
+
if not return_dict:
|
| 596 |
+
return (image, has_nsfw_concept)
|
| 597 |
+
|
| 598 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 599 |
+
return call
|
| 600 |
+
pipe.call = new_call(pipe)
|
| 601 |
+
|
| 602 |
+
def register_faster_forward(model, mod = '50ls'):
|
| 603 |
+
def faster_forward(self):
|
| 604 |
+
def forward(
|
| 605 |
+
sample: torch.FloatTensor,
|
| 606 |
+
timestep: Union[torch.Tensor, float, int],
|
| 607 |
+
encoder_hidden_states: torch.Tensor,
|
| 608 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 609 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 610 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 611 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 612 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 613 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 614 |
+
return_dict: bool = True,
|
| 615 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 616 |
+
r"""
|
| 617 |
+
Args:
|
| 618 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
| 619 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
| 620 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
| 621 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 622 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
| 623 |
+
cross_attention_kwargs (`dict`, *optional*):
|
| 624 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 625 |
+
`self.processor` in
|
| 626 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
| 627 |
+
|
| 628 |
+
Returns:
|
| 629 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
| 630 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
| 631 |
+
returning a tuple, the first element is the sample tensor.
|
| 632 |
+
"""
|
| 633 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 634 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 635 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 636 |
+
# on the fly if necessary.
|
| 637 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 638 |
+
|
| 639 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 640 |
+
forward_upsample_size = False
|
| 641 |
+
upsample_size = None
|
| 642 |
+
|
| 643 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 644 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 645 |
+
forward_upsample_size = True
|
| 646 |
+
|
| 647 |
+
# prepare attention_mask
|
| 648 |
+
if attention_mask is not None:
|
| 649 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 650 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 651 |
+
|
| 652 |
+
# 0. center input if necessary
|
| 653 |
+
if self.config.center_input_sample:
|
| 654 |
+
sample = 2 * sample - 1.0
|
| 655 |
+
|
| 656 |
+
# 1. time
|
| 657 |
+
if isinstance(timestep, list):
|
| 658 |
+
timesteps = timestep[0]
|
| 659 |
+
step = len(timestep)
|
| 660 |
+
else:
|
| 661 |
+
timesteps = timestep
|
| 662 |
+
step = 1
|
| 663 |
+
if not torch.is_tensor(timesteps) and (not isinstance(timesteps,list)):
|
| 664 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 665 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 666 |
+
is_mps = sample.device.type == "mps"
|
| 667 |
+
if isinstance(timestep, float):
|
| 668 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 669 |
+
else:
|
| 670 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 671 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 672 |
+
elif (not isinstance(timesteps,list)) and len(timesteps.shape) == 0:
|
| 673 |
+
timesteps = timesteps[None].to(sample.device)
|
| 674 |
+
|
| 675 |
+
if (not isinstance(timesteps,list)) and len(timesteps.shape) == 1:
|
| 676 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 677 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 678 |
+
elif isinstance(timesteps, list):
|
| 679 |
+
#timesteps list, such as [981,961,941]
|
| 680 |
+
timesteps = warpped_timestep(timesteps, sample.shape[0]).to(sample.device)
|
| 681 |
+
t_emb = self.time_proj(timesteps)
|
| 682 |
+
|
| 683 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 684 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 685 |
+
# there might be better ways to encapsulate this.
|
| 686 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 687 |
+
|
| 688 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 689 |
+
|
| 690 |
+
if self.class_embedding is not None:
|
| 691 |
+
if class_labels is None:
|
| 692 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 693 |
+
|
| 694 |
+
if self.config.class_embed_type == "timestep":
|
| 695 |
+
class_labels = self.time_proj(class_labels)
|
| 696 |
+
|
| 697 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 698 |
+
# there might be better ways to encapsulate this.
|
| 699 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 700 |
+
|
| 701 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 702 |
+
|
| 703 |
+
if self.config.class_embeddings_concat:
|
| 704 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 705 |
+
else:
|
| 706 |
+
emb = emb + class_emb
|
| 707 |
+
|
| 708 |
+
if self.config.addition_embed_type == "text":
|
| 709 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 710 |
+
emb = emb + aug_emb
|
| 711 |
+
|
| 712 |
+
if self.time_embed_act is not None:
|
| 713 |
+
emb = self.time_embed_act(emb)
|
| 714 |
+
|
| 715 |
+
if self.encoder_hid_proj is not None:
|
| 716 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 717 |
+
|
| 718 |
+
#===============
|
| 719 |
+
order = self.order #timestep, start by 0
|
| 720 |
+
#===============
|
| 721 |
+
ipow = int(np.sqrt(9 + 8*order))
|
| 722 |
+
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35]
|
| 723 |
+
if isinstance(mod, int):
|
| 724 |
+
cond = order % mod == 0
|
| 725 |
+
elif mod == "pro":
|
| 726 |
+
cond = ipow * ipow == (9 + 8 * order)
|
| 727 |
+
elif mod == "50ls":
|
| 728 |
+
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
|
| 729 |
+
elif mod == "50ls2":
|
| 730 |
+
cond = order in [0, 10, 11, 12, 15, 20, 25, 30,35,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
|
| 731 |
+
elif mod == "50ls3":
|
| 732 |
+
cond = order in [0, 20, 25, 30,35,45,46,47,48,49] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
|
| 733 |
+
elif mod == "50ls4":
|
| 734 |
+
cond = order in [0, 9, 13, 14, 15, 28, 29, 32, 36,45] #40 #[0,1,2,3, 5, 10, 15] #[0, 1, 2, 3, 5, 10, 15, 25, 35, 40]
|
| 735 |
+
elif mod == "100ls":
|
| 736 |
+
cond = order > 85 or order < 10 or order % 5 == 0
|
| 737 |
+
elif mod == "75ls":
|
| 738 |
+
cond = order > 65 or order < 10 or order % 5 == 0
|
| 739 |
+
elif mod == "s2":
|
| 740 |
+
cond = order < 20 or order > 40 or order % 2 == 0
|
| 741 |
+
|
| 742 |
+
if cond:
|
| 743 |
+
print(order)
|
| 744 |
+
# 2. pre-process
|
| 745 |
+
sample = self.conv_in(sample)
|
| 746 |
+
|
| 747 |
+
# 3. down
|
| 748 |
+
down_block_res_samples = (sample,)
|
| 749 |
+
for downsample_block in self.down_blocks:
|
| 750 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 751 |
+
sample, res_samples = downsample_block(
|
| 752 |
+
hidden_states=sample,
|
| 753 |
+
temb=emb,
|
| 754 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 755 |
+
attention_mask=attention_mask,
|
| 756 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 757 |
+
)
|
| 758 |
+
else:
|
| 759 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 760 |
+
|
| 761 |
+
down_block_res_samples += res_samples
|
| 762 |
+
|
| 763 |
+
if down_block_additional_residuals is not None:
|
| 764 |
+
new_down_block_res_samples = ()
|
| 765 |
+
|
| 766 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 767 |
+
down_block_res_samples, down_block_additional_residuals
|
| 768 |
+
):
|
| 769 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
| 770 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
| 771 |
+
|
| 772 |
+
down_block_res_samples = new_down_block_res_samples
|
| 773 |
+
|
| 774 |
+
# 4. mid
|
| 775 |
+
if self.mid_block is not None:
|
| 776 |
+
sample = self.mid_block(
|
| 777 |
+
sample,
|
| 778 |
+
emb,
|
| 779 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 780 |
+
attention_mask=attention_mask,
|
| 781 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 782 |
+
)
|
| 783 |
+
|
| 784 |
+
if mid_block_additional_residual is not None:
|
| 785 |
+
sample = sample + mid_block_additional_residual
|
| 786 |
+
|
| 787 |
+
#----------------------save feature-------------------------
|
| 788 |
+
# setattr(self, 'skip_feature', (tmp_sample.clone() for tmp_sample in down_block_res_samples))
|
| 789 |
+
setattr(self, 'skip_feature', deepcopy(down_block_res_samples))
|
| 790 |
+
setattr(self, 'toup_feature', sample.detach().clone())
|
| 791 |
+
#-----------------------save feature------------------------
|
| 792 |
+
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
#-------------------expand feature for parallel---------------
|
| 796 |
+
if isinstance(timestep, list):
|
| 797 |
+
#timesteps list, such as [981,961,941]
|
| 798 |
+
timesteps = warpped_timestep(timestep, sample.shape[0]).to(sample.device)
|
| 799 |
+
t_emb = self.time_proj(timesteps)
|
| 800 |
+
|
| 801 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 802 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 803 |
+
# there might be better ways to encapsulate this.
|
| 804 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 805 |
+
|
| 806 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 807 |
+
# print(emb.shape)
|
| 808 |
+
|
| 809 |
+
# print(step, sample.shape)
|
| 810 |
+
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step)
|
| 811 |
+
sample = warpped_feature(sample, step)
|
| 812 |
+
# print(step, sample.shape)
|
| 813 |
+
|
| 814 |
+
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step)
|
| 815 |
+
|
| 816 |
+
# print(emb.shape)
|
| 817 |
+
|
| 818 |
+
#-------------------expand feature for parallel---------------
|
| 819 |
+
|
| 820 |
+
else:
|
| 821 |
+
down_block_res_samples = self.skip_feature
|
| 822 |
+
sample = self.toup_feature
|
| 823 |
+
|
| 824 |
+
#-------------------expand feature for parallel---------------
|
| 825 |
+
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step)
|
| 826 |
+
sample = warpped_feature(sample, step)
|
| 827 |
+
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step)
|
| 828 |
+
#-------------------expand feature for parallel---------------
|
| 829 |
+
|
| 830 |
+
# 5. up
|
| 831 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 832 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 833 |
+
|
| 834 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 835 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 836 |
+
|
| 837 |
+
# if we have not reached the final block and need to forward the
|
| 838 |
+
# upsample size, we do it here
|
| 839 |
+
if not is_final_block and forward_upsample_size:
|
| 840 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 841 |
+
|
| 842 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 843 |
+
sample = upsample_block(
|
| 844 |
+
hidden_states=sample,
|
| 845 |
+
temb=emb,
|
| 846 |
+
res_hidden_states_tuple=res_samples,
|
| 847 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 848 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 849 |
+
upsample_size=upsample_size,
|
| 850 |
+
attention_mask=attention_mask,
|
| 851 |
+
)
|
| 852 |
+
else:
|
| 853 |
+
sample = upsample_block(
|
| 854 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
# 6. post-process
|
| 858 |
+
if self.conv_norm_out:
|
| 859 |
+
sample = self.conv_norm_out(sample)
|
| 860 |
+
sample = self.conv_act(sample)
|
| 861 |
+
sample = self.conv_out(sample)
|
| 862 |
+
|
| 863 |
+
if not return_dict:
|
| 864 |
+
return (sample,)
|
| 865 |
+
|
| 866 |
+
return UNet2DConditionOutput(sample=sample)
|
| 867 |
+
return forward
|
| 868 |
+
if model.__class__.__name__ == 'UNet2DConditionModel':
|
| 869 |
+
model.forward = faster_forward(model)
|
| 870 |
+
|
| 871 |
+
def register_normal_forward(model):
|
| 872 |
+
def normal_forward(self):
|
| 873 |
+
def forward(
|
| 874 |
+
sample: torch.FloatTensor,
|
| 875 |
+
timestep: Union[torch.Tensor, float, int],
|
| 876 |
+
encoder_hidden_states: torch.Tensor,
|
| 877 |
+
class_labels: Optional[torch.Tensor] = None,
|
| 878 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
| 879 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 880 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 881 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
| 882 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
| 883 |
+
return_dict: bool = True,
|
| 884 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
| 885 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
| 886 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
| 887 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
| 888 |
+
# on the fly if necessary.
|
| 889 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
| 890 |
+
|
| 891 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
| 892 |
+
forward_upsample_size = False
|
| 893 |
+
upsample_size = None
|
| 894 |
+
#---------------------
|
| 895 |
+
# import os
|
| 896 |
+
# os.makedirs(f'{timestep.item()}_step', exist_ok=True)
|
| 897 |
+
#---------------------
|
| 898 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
| 899 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
| 900 |
+
forward_upsample_size = True
|
| 901 |
+
|
| 902 |
+
# prepare attention_mask
|
| 903 |
+
if attention_mask is not None:
|
| 904 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
| 905 |
+
attention_mask = attention_mask.unsqueeze(1)
|
| 906 |
+
|
| 907 |
+
# 0. center input if necessary
|
| 908 |
+
if self.config.center_input_sample:
|
| 909 |
+
sample = 2 * sample - 1.0
|
| 910 |
+
|
| 911 |
+
# 1. time
|
| 912 |
+
timesteps = timestep
|
| 913 |
+
if not torch.is_tensor(timesteps):
|
| 914 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 915 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 916 |
+
is_mps = sample.device.type == "mps"
|
| 917 |
+
if isinstance(timestep, float):
|
| 918 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 919 |
+
else:
|
| 920 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 921 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 922 |
+
elif len(timesteps.shape) == 0:
|
| 923 |
+
timesteps = timesteps[None].to(sample.device)
|
| 924 |
+
|
| 925 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 926 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 927 |
+
|
| 928 |
+
t_emb = self.time_proj(timesteps)
|
| 929 |
+
|
| 930 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 931 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 932 |
+
# there might be better ways to encapsulate this.
|
| 933 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
| 934 |
+
|
| 935 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
| 936 |
+
|
| 937 |
+
if self.class_embedding is not None:
|
| 938 |
+
if class_labels is None:
|
| 939 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
| 940 |
+
|
| 941 |
+
if self.config.class_embed_type == "timestep":
|
| 942 |
+
class_labels = self.time_proj(class_labels)
|
| 943 |
+
|
| 944 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
| 945 |
+
# there might be better ways to encapsulate this.
|
| 946 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
| 947 |
+
|
| 948 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
| 949 |
+
|
| 950 |
+
if self.config.class_embeddings_concat:
|
| 951 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
| 952 |
+
else:
|
| 953 |
+
emb = emb + class_emb
|
| 954 |
+
|
| 955 |
+
if self.config.addition_embed_type == "text":
|
| 956 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
| 957 |
+
emb = emb + aug_emb
|
| 958 |
+
|
| 959 |
+
if self.time_embed_act is not None:
|
| 960 |
+
emb = self.time_embed_act(emb)
|
| 961 |
+
|
| 962 |
+
if self.encoder_hid_proj is not None:
|
| 963 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
| 964 |
+
|
| 965 |
+
# 2. pre-process
|
| 966 |
+
sample = self.conv_in(sample)
|
| 967 |
+
|
| 968 |
+
# 3. down
|
| 969 |
+
down_block_res_samples = (sample,)
|
| 970 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
| 971 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
| 972 |
+
sample, res_samples = downsample_block(
|
| 973 |
+
hidden_states=sample,
|
| 974 |
+
temb=emb,
|
| 975 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 976 |
+
attention_mask=attention_mask,
|
| 977 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 978 |
+
)
|
| 979 |
+
else:
|
| 980 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
| 981 |
+
#---------------------------------
|
| 982 |
+
# torch.save(sample, f'{timestep.item()}_step/down_{i}.pt')
|
| 983 |
+
#----------------------------------
|
| 984 |
+
down_block_res_samples += res_samples
|
| 985 |
+
|
| 986 |
+
if down_block_additional_residuals is not None:
|
| 987 |
+
new_down_block_res_samples = ()
|
| 988 |
+
|
| 989 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
| 990 |
+
down_block_res_samples, down_block_additional_residuals
|
| 991 |
+
):
|
| 992 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
| 993 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
| 994 |
+
|
| 995 |
+
down_block_res_samples = new_down_block_res_samples
|
| 996 |
+
|
| 997 |
+
# 4. mid
|
| 998 |
+
if self.mid_block is not None:
|
| 999 |
+
sample = self.mid_block(
|
| 1000 |
+
sample,
|
| 1001 |
+
emb,
|
| 1002 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1003 |
+
attention_mask=attention_mask,
|
| 1004 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1005 |
+
)
|
| 1006 |
+
# torch.save(sample, f'{timestep.item()}_step/mid.pt')
|
| 1007 |
+
if mid_block_additional_residual is not None:
|
| 1008 |
+
sample = sample + mid_block_additional_residual
|
| 1009 |
+
# 5. up
|
| 1010 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
| 1011 |
+
is_final_block = i == len(self.up_blocks) - 1
|
| 1012 |
+
|
| 1013 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
| 1014 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
| 1015 |
+
|
| 1016 |
+
# if we have not reached the final block and need to forward the
|
| 1017 |
+
# upsample size, we do it here
|
| 1018 |
+
if not is_final_block and forward_upsample_size:
|
| 1019 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
| 1020 |
+
|
| 1021 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
| 1022 |
+
sample = upsample_block(
|
| 1023 |
+
hidden_states=sample,
|
| 1024 |
+
temb=emb,
|
| 1025 |
+
res_hidden_states_tuple=res_samples,
|
| 1026 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1027 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1028 |
+
upsample_size=upsample_size,
|
| 1029 |
+
attention_mask=attention_mask,
|
| 1030 |
+
)
|
| 1031 |
+
else:
|
| 1032 |
+
sample = upsample_block(
|
| 1033 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
| 1034 |
+
)
|
| 1035 |
+
#----------------------------
|
| 1036 |
+
# torch.save(sample, f'{timestep.item()}_step/up_{i}.pt')
|
| 1037 |
+
#----------------------------
|
| 1038 |
+
# 6. post-process
|
| 1039 |
+
if self.conv_norm_out:
|
| 1040 |
+
sample = self.conv_norm_out(sample)
|
| 1041 |
+
sample = self.conv_act(sample)
|
| 1042 |
+
sample = self.conv_out(sample)
|
| 1043 |
+
|
| 1044 |
+
if not return_dict:
|
| 1045 |
+
return (sample,)
|
| 1046 |
+
|
| 1047 |
+
return UNet2DConditionOutput(sample=sample)
|
| 1048 |
+
return forward
|
| 1049 |
+
if model.__class__.__name__ == 'UNet2DConditionModel':
|
| 1050 |
+
model.forward = normal_forward(model)
|
| 1051 |
+
|
| 1052 |
+
def refister_time(unet, t):
|
| 1053 |
+
setattr(unet, 'order', t)
|
| 1054 |
+
|
| 1055 |
+
|
| 1056 |
+
|
| 1057 |
+
def register_controlnet_pipeline2(pipe):
|
| 1058 |
+
def new_call(self):
|
| 1059 |
+
@torch.no_grad()
|
| 1060 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 1061 |
+
def call(
|
| 1062 |
+
prompt: Union[str, List[str]] = None,
|
| 1063 |
+
image: Union[
|
| 1064 |
+
torch.FloatTensor,
|
| 1065 |
+
PIL.Image.Image,
|
| 1066 |
+
np.ndarray,
|
| 1067 |
+
List[torch.FloatTensor],
|
| 1068 |
+
List[PIL.Image.Image],
|
| 1069 |
+
List[np.ndarray],
|
| 1070 |
+
] = None,
|
| 1071 |
+
height: Optional[int] = None,
|
| 1072 |
+
width: Optional[int] = None,
|
| 1073 |
+
num_inference_steps: int = 50,
|
| 1074 |
+
guidance_scale: float = 7.5,
|
| 1075 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 1076 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 1077 |
+
eta: float = 0.0,
|
| 1078 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 1079 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 1080 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1081 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 1082 |
+
output_type: Optional[str] = "pil",
|
| 1083 |
+
return_dict: bool = True,
|
| 1084 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
| 1085 |
+
callback_steps: int = 1,
|
| 1086 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1087 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
| 1088 |
+
guess_mode: bool = False,
|
| 1089 |
+
):
|
| 1090 |
+
# 1. Check inputs. Raise error if not correct
|
| 1091 |
+
self.check_inputs(
|
| 1092 |
+
prompt,
|
| 1093 |
+
image,
|
| 1094 |
+
callback_steps,
|
| 1095 |
+
negative_prompt,
|
| 1096 |
+
prompt_embeds,
|
| 1097 |
+
negative_prompt_embeds,
|
| 1098 |
+
controlnet_conditioning_scale,
|
| 1099 |
+
)
|
| 1100 |
+
|
| 1101 |
+
# 2. Define call parameters
|
| 1102 |
+
if prompt is not None and isinstance(prompt, str):
|
| 1103 |
+
batch_size = 1
|
| 1104 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 1105 |
+
batch_size = len(prompt)
|
| 1106 |
+
else:
|
| 1107 |
+
batch_size = prompt_embeds.shape[0]
|
| 1108 |
+
|
| 1109 |
+
device = self._execution_device
|
| 1110 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 1111 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 1112 |
+
# corresponds to doing no classifier free guidance.
|
| 1113 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1114 |
+
|
| 1115 |
+
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
| 1116 |
+
|
| 1117 |
+
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
| 1118 |
+
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
|
| 1119 |
+
|
| 1120 |
+
global_pool_conditions = (
|
| 1121 |
+
controlnet.config.global_pool_conditions
|
| 1122 |
+
if isinstance(controlnet, ControlNetModel)
|
| 1123 |
+
else controlnet.nets[0].config.global_pool_conditions
|
| 1124 |
+
)
|
| 1125 |
+
guess_mode = guess_mode or global_pool_conditions
|
| 1126 |
+
|
| 1127 |
+
# 3. Encode input prompt
|
| 1128 |
+
text_encoder_lora_scale = (
|
| 1129 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
| 1130 |
+
)
|
| 1131 |
+
prompt_embeds = self._encode_prompt(
|
| 1132 |
+
prompt,
|
| 1133 |
+
device,
|
| 1134 |
+
num_images_per_prompt,
|
| 1135 |
+
do_classifier_free_guidance,
|
| 1136 |
+
negative_prompt,
|
| 1137 |
+
prompt_embeds=prompt_embeds,
|
| 1138 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 1139 |
+
lora_scale=text_encoder_lora_scale,
|
| 1140 |
+
)
|
| 1141 |
+
|
| 1142 |
+
# 4. Prepare image
|
| 1143 |
+
if isinstance(controlnet, ControlNetModel):
|
| 1144 |
+
image = self.prepare_image(
|
| 1145 |
+
image=image,
|
| 1146 |
+
width=width,
|
| 1147 |
+
height=height,
|
| 1148 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 1149 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1150 |
+
device=device,
|
| 1151 |
+
dtype=controlnet.dtype,
|
| 1152 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 1153 |
+
guess_mode=guess_mode,
|
| 1154 |
+
)
|
| 1155 |
+
height, width = image.shape[-2:]
|
| 1156 |
+
elif isinstance(controlnet, MultiControlNetModel):
|
| 1157 |
+
images = []
|
| 1158 |
+
|
| 1159 |
+
for image_ in image:
|
| 1160 |
+
image_ = self.prepare_image(
|
| 1161 |
+
image=image_,
|
| 1162 |
+
width=width,
|
| 1163 |
+
height=height,
|
| 1164 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 1165 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 1166 |
+
device=device,
|
| 1167 |
+
dtype=controlnet.dtype,
|
| 1168 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 1169 |
+
guess_mode=guess_mode,
|
| 1170 |
+
)
|
| 1171 |
+
|
| 1172 |
+
images.append(image_)
|
| 1173 |
+
|
| 1174 |
+
image = images
|
| 1175 |
+
height, width = image[0].shape[-2:]
|
| 1176 |
+
else:
|
| 1177 |
+
assert False
|
| 1178 |
+
|
| 1179 |
+
# 5. Prepare timesteps
|
| 1180 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 1181 |
+
timesteps = self.scheduler.timesteps
|
| 1182 |
+
|
| 1183 |
+
# 6. Prepare latent variables
|
| 1184 |
+
num_channels_latents = self.unet.config.in_channels
|
| 1185 |
+
latents = self.prepare_latents(
|
| 1186 |
+
batch_size * num_images_per_prompt,
|
| 1187 |
+
num_channels_latents,
|
| 1188 |
+
height,
|
| 1189 |
+
width,
|
| 1190 |
+
prompt_embeds.dtype,
|
| 1191 |
+
device,
|
| 1192 |
+
generator,
|
| 1193 |
+
latents,
|
| 1194 |
+
)
|
| 1195 |
+
self.init_latent = latents.detach().clone()
|
| 1196 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 1197 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 1198 |
+
|
| 1199 |
+
# 8. Denoising loop
|
| 1200 |
+
#-------------------------------------------------------------
|
| 1201 |
+
all_steps = len(self.scheduler.timesteps)
|
| 1202 |
+
curr_span = 1
|
| 1203 |
+
curr_step = 0
|
| 1204 |
+
|
| 1205 |
+
# st = time.time()
|
| 1206 |
+
idx = 1
|
| 1207 |
+
keytime = [0,1,2,3,5,10,15,25,35,50]
|
| 1208 |
+
|
| 1209 |
+
while curr_step<all_steps:
|
| 1210 |
+
# torch.cuda.empty_cache()
|
| 1211 |
+
# print(curr_step)
|
| 1212 |
+
refister_time(self.unet, curr_step)
|
| 1213 |
+
|
| 1214 |
+
merge_span = curr_span
|
| 1215 |
+
if merge_span>0:
|
| 1216 |
+
time_ls = []
|
| 1217 |
+
for i in range(curr_step, curr_step+merge_span):
|
| 1218 |
+
if i<all_steps:
|
| 1219 |
+
time_ls.append(self.scheduler.timesteps[i])
|
| 1220 |
+
else:
|
| 1221 |
+
break
|
| 1222 |
+
# torch.cuda.empty_cache()
|
| 1223 |
+
|
| 1224 |
+
##--------------------------------
|
| 1225 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1226 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, time_ls[0])
|
| 1227 |
+
|
| 1228 |
+
if curr_step in [0,1,2,3,5,10,15,25,35]:
|
| 1229 |
+
# controlnet(s) inference
|
| 1230 |
+
control_model_input = latent_model_input
|
| 1231 |
+
controlnet_prompt_embeds = prompt_embeds
|
| 1232 |
+
|
| 1233 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 1234 |
+
control_model_input,
|
| 1235 |
+
time_ls[0],
|
| 1236 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
| 1237 |
+
controlnet_cond=image,
|
| 1238 |
+
conditioning_scale=controlnet_conditioning_scale,
|
| 1239 |
+
guess_mode=guess_mode,
|
| 1240 |
+
return_dict=False,
|
| 1241 |
+
)
|
| 1242 |
+
|
| 1243 |
+
|
| 1244 |
+
#----------------------save controlnet feature-------------------------
|
| 1245 |
+
#useless, shoule delete
|
| 1246 |
+
# setattr(self, 'downres_samples', deepcopy(down_block_res_samples))
|
| 1247 |
+
# setattr(self, 'midres_sample', mid_block_res_sample.detach().clone())
|
| 1248 |
+
#-----------------------save controlnet feature------------------------
|
| 1249 |
+
else:
|
| 1250 |
+
down_block_res_samples = None #self.downres_samples
|
| 1251 |
+
mid_block_res_sample = None #self.midres_sample
|
| 1252 |
+
# predict the noise residual
|
| 1253 |
+
noise_pred = self.unet(
|
| 1254 |
+
latent_model_input,
|
| 1255 |
+
time_ls,
|
| 1256 |
+
encoder_hidden_states=prompt_embeds,
|
| 1257 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1258 |
+
down_block_additional_residuals=down_block_res_samples,
|
| 1259 |
+
mid_block_additional_residual=mid_block_res_sample,
|
| 1260 |
+
return_dict=False,
|
| 1261 |
+
)[0]
|
| 1262 |
+
|
| 1263 |
+
# perform guidance
|
| 1264 |
+
if do_classifier_free_guidance:
|
| 1265 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1266 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1267 |
+
|
| 1268 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1269 |
+
|
| 1270 |
+
if isinstance(time_ls, list):
|
| 1271 |
+
step_span = len(time_ls)
|
| 1272 |
+
bs = noise_pred.shape[0]
|
| 1273 |
+
bs_perstep = bs//step_span
|
| 1274 |
+
|
| 1275 |
+
denoised_latent = latents
|
| 1276 |
+
for i, timestep in enumerate(time_ls):
|
| 1277 |
+
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
|
| 1278 |
+
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0]
|
| 1279 |
+
|
| 1280 |
+
latents = denoised_latent
|
| 1281 |
+
##----------------------------------------
|
| 1282 |
+
curr_step += curr_span
|
| 1283 |
+
idx += 1
|
| 1284 |
+
if curr_step<all_steps:
|
| 1285 |
+
curr_span = keytime[idx] - keytime[idx-1]
|
| 1286 |
+
|
| 1287 |
+
# for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
|
| 1288 |
+
|
| 1289 |
+
#-------------------------------------------------------------
|
| 1290 |
+
|
| 1291 |
+
|
| 1292 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
| 1293 |
+
# manually for max memory savings
|
| 1294 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1295 |
+
self.unet.to("cpu")
|
| 1296 |
+
self.controlnet.to("cpu")
|
| 1297 |
+
torch.cuda.empty_cache()
|
| 1298 |
+
|
| 1299 |
+
if not output_type == "latent":
|
| 1300 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 1301 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
| 1302 |
+
else:
|
| 1303 |
+
image = latents
|
| 1304 |
+
has_nsfw_concept = None
|
| 1305 |
+
|
| 1306 |
+
if has_nsfw_concept is None:
|
| 1307 |
+
do_denormalize = [True] * image.shape[0]
|
| 1308 |
+
else:
|
| 1309 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
| 1310 |
+
|
| 1311 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
| 1312 |
+
|
| 1313 |
+
# Offload last model to CPU
|
| 1314 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
| 1315 |
+
self.final_offload_hook.offload()
|
| 1316 |
+
|
| 1317 |
+
if not return_dict:
|
| 1318 |
+
return (image, has_nsfw_concept)
|
| 1319 |
+
|
| 1320 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
| 1321 |
+
return call
|
| 1322 |
+
pipe.call = new_call(pipe)
|
| 1323 |
+
|
| 1324 |
+
@torch.no_grad()
|
| 1325 |
+
def multistep_pre(self, noise_pred, t, x):
|
| 1326 |
+
step_span = len(t)
|
| 1327 |
+
bs = noise_pred.shape[0]
|
| 1328 |
+
bs_perstep = bs//step_span
|
| 1329 |
+
|
| 1330 |
+
denoised_latent = x
|
| 1331 |
+
for i, timestep in enumerate(t):
|
| 1332 |
+
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep]
|
| 1333 |
+
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent)['prev_sample']
|
| 1334 |
+
return denoised_latent
|
| 1335 |
+
|
| 1336 |
+
def register_t2v(model):
|
| 1337 |
+
def new_back(self):
|
| 1338 |
+
def backward_loop(
|
| 1339 |
+
latents,
|
| 1340 |
+
timesteps,
|
| 1341 |
+
prompt_embeds,
|
| 1342 |
+
guidance_scale,
|
| 1343 |
+
callback,
|
| 1344 |
+
callback_steps,
|
| 1345 |
+
num_warmup_steps,
|
| 1346 |
+
extra_step_kwargs,
|
| 1347 |
+
cross_attention_kwargs=None,):
|
| 1348 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 1349 |
+
num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order
|
| 1350 |
+
import time
|
| 1351 |
+
if num_steps<10:
|
| 1352 |
+
with self.progress_bar(total=num_steps) as progress_bar:
|
| 1353 |
+
for i, t in enumerate(timesteps):
|
| 1354 |
+
setattr(self.unet, 'order', i)
|
| 1355 |
+
# expand the latents if we are doing classifier free guidance
|
| 1356 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1357 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 1358 |
+
|
| 1359 |
+
# predict the noise residual
|
| 1360 |
+
noise_pred = self.unet(
|
| 1361 |
+
latent_model_input,
|
| 1362 |
+
t,
|
| 1363 |
+
encoder_hidden_states=prompt_embeds,
|
| 1364 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1365 |
+
).sample
|
| 1366 |
+
|
| 1367 |
+
# perform guidance
|
| 1368 |
+
if do_classifier_free_guidance:
|
| 1369 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1370 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1371 |
+
|
| 1372 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1373 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 1374 |
+
|
| 1375 |
+
# call the callback, if provided
|
| 1376 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 1377 |
+
progress_bar.update()
|
| 1378 |
+
if callback is not None and i % callback_steps == 0:
|
| 1379 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 1380 |
+
callback(step_idx, t, latents)
|
| 1381 |
+
|
| 1382 |
+
else:
|
| 1383 |
+
all_timesteps = len(timesteps)
|
| 1384 |
+
curr_step = 0
|
| 1385 |
+
|
| 1386 |
+
while curr_step<all_timesteps:
|
| 1387 |
+
refister_time(self.unet, curr_step)
|
| 1388 |
+
|
| 1389 |
+
time_ls = []
|
| 1390 |
+
time_ls.append(timesteps[curr_step])
|
| 1391 |
+
curr_step += 1
|
| 1392 |
+
cond = curr_step in [0,1,2,3,5,10,15,25,35]
|
| 1393 |
+
|
| 1394 |
+
while (not cond) and (curr_step<all_timesteps):
|
| 1395 |
+
time_ls.append(timesteps[curr_step])
|
| 1396 |
+
curr_step += 1
|
| 1397 |
+
cond = curr_step in [0,1,2,3,5,10,15,25,35]
|
| 1398 |
+
|
| 1399 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 1400 |
+
# predict the noise residual
|
| 1401 |
+
noise_pred = self.unet(
|
| 1402 |
+
latent_model_input,
|
| 1403 |
+
time_ls,
|
| 1404 |
+
encoder_hidden_states=prompt_embeds,
|
| 1405 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 1406 |
+
).sample
|
| 1407 |
+
|
| 1408 |
+
# perform guidance
|
| 1409 |
+
if do_classifier_free_guidance:
|
| 1410 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1411 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 1412 |
+
|
| 1413 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 1414 |
+
latents = multistep_pre(self, noise_pred, time_ls, latents)
|
| 1415 |
+
|
| 1416 |
+
return latents.clone().detach()
|
| 1417 |
+
return backward_loop
|
| 1418 |
+
model.backward_loop = new_back(model)
|
| 1419 |
+
|