Spaces:
Runtime error
Runtime error
Commit
·
d10f466
1
Parent(s):
95b06b4
creating app.py file
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load the pre-trained object detection model (replace with your own model)
|
8 |
+
# For example, using a torchvision model for demonstration purposes
|
9 |
+
model = torch.hub.load('pytorch/vision:v0.10.0', 'fasterrcnn_resnet50_fpn', pretrained=True)
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
# Define the transformations for the input image
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.ToTensor(),
|
15 |
+
])
|
16 |
+
|
17 |
+
# Function to perform object detection on an image
|
18 |
+
def detect_objects(image):
|
19 |
+
# Convert image to tensor
|
20 |
+
input_tensor = transform(image).unsqueeze(0)
|
21 |
+
|
22 |
+
# Perform object detection
|
23 |
+
with torch.no_grad():
|
24 |
+
predictions = model(input_tensor)
|
25 |
+
|
26 |
+
# Extract bounding boxes and labels from predictions
|
27 |
+
boxes = predictions[0]['boxes'].numpy()
|
28 |
+
labels = predictions[0]['labels'].numpy()
|
29 |
+
|
30 |
+
return boxes, labels
|
31 |
+
|
32 |
+
# Function for live object detection from the camera
|
33 |
+
def live_object_detection():
|
34 |
+
# Open a connection to the camera (replace with your own camera setup)
|
35 |
+
cap = cv2.VideoCapture(0)
|
36 |
+
|
37 |
+
while True:
|
38 |
+
# Capture frame-by-frame
|
39 |
+
ret, frame = cap.read()
|
40 |
+
|
41 |
+
# Convert the frame to PIL Image
|
42 |
+
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
43 |
+
|
44 |
+
# Perform object detection
|
45 |
+
boxes, labels = detect_objects(frame_pil)
|
46 |
+
|
47 |
+
# Draw bounding boxes on the frame
|
48 |
+
for box, label in zip(boxes, labels):
|
49 |
+
box = [int(coord) for coord in box]
|
50 |
+
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
51 |
+
cv2.putText(frame, f"Label: {label}", (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
52 |
+
|
53 |
+
# Display the resulting frame
|
54 |
+
cv2.imshow('Object Detection', frame)
|
55 |
+
|
56 |
+
# Break the loop when 'q' key is pressed
|
57 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
58 |
+
break
|
59 |
+
|
60 |
+
# Release the camera and close all windows
|
61 |
+
cap.release()
|
62 |
+
cv2.destroyAllWindows()
|
63 |
+
|
64 |
+
# Define the Gradio interface
|
65 |
+
iface = gr.Interface(
|
66 |
+
fn=[detect_objects, live_object_detection],
|
67 |
+
inputs=[
|
68 |
+
gr.Image(type="pil", label="Upload a photo for object detection"),
|
69 |
+
"webcam",
|
70 |
+
],
|
71 |
+
outputs="image",
|
72 |
+
live=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
# Launch the Gradio interface
|
76 |
+
iface.launch()
|