str20tbl commited on
Commit
bd639ee
·
1 Parent(s): ddd7573
Files changed (1) hide show
  1. app.py +3 -7
app.py CHANGED
@@ -4,12 +4,9 @@ import librosa
4
  import numpy as np
5
  import torch
6
 
7
- from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
8
 
9
- checkpoint = "microsoft/speecht5_tts"
10
- processor = SpeechT5Processor.from_pretrained(checkpoint)
11
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
12
- model = SpeechT5ForTextToSpeech.from_pretrained("techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
13
 
14
  speaker_embeddings = {
15
  "GGP": "spkemb/speaker0.npy",
@@ -41,8 +38,7 @@ def predict(text, speaker):
41
  speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
42
  speaker_embedding = prepare_dataset(speaker_embedding)
43
  speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
44
- inputs = processor(text=text, return_tensors="pt")
45
- speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
46
  speech = (speech.numpy() * 32767).astype(np.int16)
47
  return (16000, speech)
48
 
 
4
  import numpy as np
5
  import torch
6
 
7
+ from transformers import pipeline
8
 
9
+ synthesiser = pipeline("text-to-speech", "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
 
 
 
10
 
11
  speaker_embeddings = {
12
  "GGP": "spkemb/speaker0.npy",
 
38
  speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
39
  speaker_embedding = prepare_dataset(speaker_embedding)
40
  speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
41
+ speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
 
42
  speech = (speech.numpy() * 32767).astype(np.int16)
43
  return (16000, speech)
44