demo
Browse files
app.py
CHANGED
@@ -4,12 +4,9 @@ import librosa
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
-
from transformers import
|
8 |
|
9 |
-
|
10 |
-
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
11 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
|
13 |
|
14 |
speaker_embeddings = {
|
15 |
"GGP": "spkemb/speaker0.npy",
|
@@ -41,8 +38,7 @@ def predict(text, speaker):
|
|
41 |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
42 |
speaker_embedding = prepare_dataset(speaker_embedding)
|
43 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
44 |
-
|
45 |
-
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
46 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
47 |
return (16000, speech)
|
48 |
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
+
from transformers import pipeline
|
8 |
|
9 |
+
synthesiser = pipeline("text-to-speech", "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
|
|
|
|
|
|
|
10 |
|
11 |
speaker_embeddings = {
|
12 |
"GGP": "spkemb/speaker0.npy",
|
|
|
38 |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
39 |
speaker_embedding = prepare_dataset(speaker_embedding)
|
40 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
41 |
+
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
|
|
|
42 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
43 |
return (16000, speech)
|
44 |
|