str20tbl commited on
Commit
adc0c37
·
1 Parent(s): b5f5075
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -5,9 +5,12 @@ import librosa
5
  import numpy as np
6
  import torch
7
 
8
- from transformers import pipeline
9
 
10
- synthesiser = pipeline("text-to-speech", "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
 
 
 
11
 
12
  speaker_embeddings = {
13
  "GGP": "spkemb/speaker0.npy",
@@ -21,7 +24,8 @@ def predict(text, speaker):
21
  return (16000, np.zeros(0).astype(np.int16))
22
  speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
23
  speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
24
- speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
 
25
  speech = (speech.numpy() * 32767).astype(np.int16)
26
  return (16000, speech)
27
 
 
5
  import numpy as np
6
  import torch
7
 
8
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
9
 
10
+ checkpoint = "microsoft/speecht5_tts"
11
+ processor = SpeechT5Processor.from_pretrained(checkpoint)
12
+ model = SpeechT5ForTextToSpeech.from_pretrained("techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
13
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
14
 
15
  speaker_embeddings = {
16
  "GGP": "spkemb/speaker0.npy",
 
24
  return (16000, np.zeros(0).astype(np.int16))
25
  speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
26
  speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
27
+ inputs = processor(text=text, return_tensors="pt")
28
+ speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
29
  speech = (speech.numpy() * 32767).astype(np.int16)
30
  return (16000, speech)
31