demo
Browse files
app.py
CHANGED
@@ -4,14 +4,9 @@ import librosa
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
-
from transformers import
|
8 |
-
|
9 |
-
|
10 |
-
checkpoint = "microsoft/speecht5_tts"
|
11 |
-
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
12 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
13 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
14 |
|
|
|
15 |
|
16 |
speaker_embeddings = {
|
17 |
"GGP": "spkemb/speaker0.npy",
|
@@ -25,8 +20,6 @@ def predict(text, speaker):
|
|
25 |
if len(text.strip()) == 0:
|
26 |
return (16000, np.zeros(0).astype(np.int16))
|
27 |
|
28 |
-
inputs = processor(text=text, return_tensors="pt")
|
29 |
-
|
30 |
# limit input length
|
31 |
input_ids = inputs["input_ids"]
|
32 |
input_ids = input_ids[..., :model.config.max_text_positions]
|
@@ -51,8 +44,9 @@ def predict(text, speaker):
|
|
51 |
|
52 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
57 |
return (16000, speech)
|
58 |
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
|
7 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
synthesiser = pipeline("text-to-speech", "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en")
|
10 |
|
11 |
speaker_embeddings = {
|
12 |
"GGP": "spkemb/speaker0.npy",
|
|
|
20 |
if len(text.strip()) == 0:
|
21 |
return (16000, np.zeros(0).astype(np.int16))
|
22 |
|
|
|
|
|
23 |
# limit input length
|
24 |
input_ids = inputs["input_ids"]
|
25 |
input_ids = input_ids[..., :model.config.max_text_positions]
|
|
|
44 |
|
45 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
46 |
|
47 |
+
|
48 |
+
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
|
49 |
+
|
50 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
51 |
return (16000, speech)
|
52 |
|