demo
Browse files
app.py
CHANGED
@@ -9,6 +9,9 @@ from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5Hif
|
|
9 |
checkpoint = "microsoft/speecht5_tts"
|
10 |
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
11 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
|
|
|
|
12 |
|
13 |
speaker_embeddings = {
|
14 |
"GGP": "spkemb/speaker0.npy",
|
@@ -23,9 +26,6 @@ def predict(text, speaker):
|
|
23 |
|
24 |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
25 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
26 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
27 |
-
"techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en"
|
28 |
-
)
|
29 |
inputs = processor(text=text, return_tensors="pt")
|
30 |
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
31 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
|
|
9 |
checkpoint = "microsoft/speecht5_tts"
|
10 |
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
11 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(
|
13 |
+
"techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en"
|
14 |
+
)
|
15 |
|
16 |
speaker_embeddings = {
|
17 |
"GGP": "spkemb/speaker0.npy",
|
|
|
26 |
|
27 |
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
28 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
|
|
|
|
|
|
29 |
inputs = processor(text=text, return_tensors="pt")
|
30 |
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
|
31 |
speech = (speech.numpy() * 32767).astype(np.int16)
|