demo
Browse files
app.py
CHANGED
@@ -24,6 +24,23 @@ speaker_model = EncoderClassifier.from_hparams(
|
|
24 |
savedir=os.path.join("/tmp", spk_model_name),
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def create_speaker_embedding(waveform):
|
29 |
with torch.no_grad():
|
|
|
24 |
savedir=os.path.join("/tmp", spk_model_name),
|
25 |
)
|
26 |
|
27 |
+
def prepare_dataset(examp):
|
28 |
+
audio = examp["audio"]
|
29 |
+
|
30 |
+
examp = processor(
|
31 |
+
text=examp["sentence"],
|
32 |
+
audio_target=audio["array"],
|
33 |
+
sampling_rate=audio["sampling_rate"],
|
34 |
+
return_attention_mask=False,
|
35 |
+
)
|
36 |
+
|
37 |
+
# strip off the batch dimension
|
38 |
+
examp["labels"] = examp["labels"][0]
|
39 |
+
|
40 |
+
# use SpeechBrain to obtain x-vector
|
41 |
+
examp["speaker_embeddings"] = create_speaker_embedding(audio["array"])
|
42 |
+
|
43 |
+
return examp
|
44 |
|
45 |
def create_speaker_embedding(waveform):
|
46 |
with torch.no_grad():
|