str20tbl's picture
demo
f9a5d7f
import os
import spaces
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
checkpoint = "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
speaker_embeddings = {
"GGP": "spkemb/speaker0.npy",
"BGP": "spkemb/speaker1.npy",
"BDP": "spkemb/speaker2.npy",
}
@spaces.GPU
def predict(text, speaker, mic_audio=None):
if len(text.strip()) == 0:
return (16000, np.zeros(0).astype(np.int16))
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"], speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "Techiaith Finetune Microsoft/SpeechT5: Speech Synthesis"
description = """
Lleisiau TTS microsoft_speech_T5_finetune_bu_tts_cy_en
"""
examples = [
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "GGP (gwryw-gogledd-pro)"],
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "BGP (benyw-gogledd-pro)"],
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "BDP (benyw-de-pro)"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Input Text"),
gr.Radio(label="Speaker", choices=[
"GGP (gwryw-gogledd-pro)",
"BGP (benyw-gogledd-pro)",
"BDP (benyw-de-pro)",
],
value="GGP (gwryw-gogledd-pro)"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
title=title,
description=description,
examples=examples,
).launch()