|
import os |
|
import spaces |
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
import torch |
|
from speechbrain.inference import EncoderClassifier |
|
from transformers import pipeline |
|
|
|
synthesiser = pipeline("text-to-speech", "techiaith/microsoft_speecht5_finetuned_bu_tts_cy_en") |
|
|
|
speaker_embeddings = { |
|
"GGP": "spkemb/speaker0.npy", |
|
"BGP": "spkemb/speaker1.npy", |
|
"BDP": "spkemb/speaker2.npy", |
|
} |
|
|
|
spk_model_name = "speechbrain/spkrec-xvect-voxceleb" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f">>>>> DEVICE {device}") |
|
speaker_model = EncoderClassifier.from_hparams( |
|
source=spk_model_name, |
|
run_opts={"device": device}, |
|
savedir=os.path.join("/tmp", spk_model_name), |
|
) |
|
|
|
|
|
def create_speaker_embedding(waveform): |
|
with torch.no_grad(): |
|
se = speaker_model.encode_batch(torch.tensor(waveform)) |
|
se = torch.nn.functional.normalize(se, dim=2) |
|
se = se.squeeze().cpu().numpy() |
|
return se |
|
|
|
@spaces.GPU |
|
def predict(text, speaker): |
|
if len(text.strip()) == 0: |
|
return (16000, np.zeros(0).astype(np.int16)) |
|
speaker_embedding = np.load(speaker_embeddings[speaker[:3]]) |
|
speaker_embedding = prepare_dataset(speaker_embedding) |
|
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) |
|
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding}) |
|
speech = (speech.numpy() * 32767).astype(np.int16) |
|
return (16000, speech) |
|
|
|
|
|
title = "Techiaith Finetune Microsoft/SpeechT5: Speech Synthesis" |
|
|
|
description = """ |
|
Lleisiau TTS microsoft_speech_T5_finetune_bu_tts_cy_en |
|
""" |
|
|
|
examples = [ |
|
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "GGP (gwryw-gogledd-pro)"], |
|
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "BGP (benyw-gogledd-pro)"], |
|
["Rhyfeddod neu ffenomenon optegol a meteorolegol yw enfys, pan fydd sbectrwm o olau yn ymddangos yn yr awyr pan fo'r haul yn disgleirio ar ddiferion o leithder yn atmosffer y ddaear.", "BDP (benyw-de-pro)"], |
|
] |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Text(label="Input Text"), |
|
gr.Radio(label="Speaker", choices=[ |
|
"GGP (gwryw-gogledd-pro)", |
|
"BGP (benyw-gogledd-pro)", |
|
"BDP (benyw-de-pro)", |
|
], |
|
value="GGP (gwryw-gogledd-pro)"), |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Speech", type="numpy"), |
|
], |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
).launch() |
|
|