Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for sequence to sequence. | |
| """ | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
| import logging | |
| import os | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import datasets | |
| import evaluate | |
| import numpy as np | |
| from datasets import load_dataset | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSeq2SeqLM, | |
| AutoTokenizer, | |
| DataCollatorForSeq2Seq, | |
| HfArgumentParser, | |
| M2M100Tokenizer, | |
| MBart50Tokenizer, | |
| MBart50TokenizerFast, | |
| MBartTokenizer, | |
| MBartTokenizerFast, | |
| Seq2SeqTrainer, | |
| Seq2SeqTrainingArguments, | |
| default_data_collator, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/translation/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| # A list of all multilingual tokenizer which require src_lang and tgt_lang attributes. | |
| MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer] | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| source_lang: str = field(default=None, metadata={"help": "Source language id for translation."}) | |
| target_lang: str = field(default=None, metadata={"help": "Target language id for translation."}) | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "An optional input evaluation data file to evaluate the metrics (sacrebleu) on a jsonlines file." | |
| }, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input test data file to evaluate the metrics (sacrebleu) on a jsonlines file."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=1024, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
| "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
| "during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to model maximum sentence length. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
| "efficient on GPU but very bad for TPU." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " | |
| "which is used during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
| }, | |
| ) | |
| source_prefix: Optional[str] = field( | |
| default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
| ) | |
| forced_bos_token: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for" | |
| " multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to" | |
| " be the target language token.(Usually it is the target language token)" | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation file.") | |
| elif self.source_lang is None or self.target_lang is None: | |
| raise ValueError("Need to specify the source language and the target language.") | |
| # accepting both json and jsonl file extensions, as | |
| # many jsonlines files actually have a .json extension | |
| valid_extensions = ["json", "jsonl"] | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in valid_extensions, "`train_file` should be a jsonlines file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in valid_extensions, "`validation_file` should be a jsonlines file." | |
| if self.val_max_target_length is None: | |
| self.val_max_target_length = self.max_target_length | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_translation", model_args, data_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| if data_args.source_prefix is None and model_args.model_name_or_path in [ | |
| "t5-small", | |
| "t5-base", | |
| "t5-large", | |
| "t5-3b", | |
| "t5-11b", | |
| ]: | |
| logger.warning( | |
| "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with " | |
| "`--source_prefix 'translate English to German: ' `" | |
| ) | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Get the datasets: you can either provide your own JSON training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For translation, only JSON files are supported, with one field named "translation" containing two keys for the | |
| # source and target languages (unless you adapt what follows). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading. | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| model = AutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch | |
| # on a small vocab and want a smaller embedding size, remove this test. | |
| embedding_size = model.get_input_embeddings().weight.shape[0] | |
| if len(tokenizer) > embedding_size: | |
| model.resize_token_embeddings(len(tokenizer)) | |
| # Set decoder_start_token_id | |
| if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): | |
| if isinstance(tokenizer, MBartTokenizer): | |
| model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang] | |
| else: | |
| model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang) | |
| if model.config.decoder_start_token_id is None: | |
| raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
| prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| elif training_args.do_predict: | |
| column_names = raw_datasets["test"].column_names | |
| else: | |
| logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
| return | |
| # For translation we set the codes of our source and target languages (only useful for mBART, the others will | |
| # ignore those attributes). | |
| if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)): | |
| assert data_args.target_lang is not None and data_args.source_lang is not None, ( | |
| f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and " | |
| "--target_lang arguments." | |
| ) | |
| tokenizer.src_lang = data_args.source_lang | |
| tokenizer.tgt_lang = data_args.target_lang | |
| # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token | |
| # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument. | |
| forced_bos_token_id = ( | |
| tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None | |
| ) | |
| model.config.forced_bos_token_id = forced_bos_token_id | |
| # Get the language codes for input/target. | |
| source_lang = data_args.source_lang.split("_")[0] | |
| target_lang = data_args.target_lang.split("_")[0] | |
| # Temporarily set max_target_length for training. | |
| max_target_length = data_args.max_target_length | |
| padding = "max_length" if data_args.pad_to_max_length else False | |
| if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): | |
| logger.warning( | |
| "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" | |
| f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" | |
| ) | |
| def preprocess_function(examples): | |
| inputs = [ex[source_lang] for ex in examples["translation"]] | |
| targets = [ex[target_lang] for ex in examples["translation"]] | |
| inputs = [prefix + inp for inp in inputs] | |
| model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True) | |
| # Tokenize targets with the `text_target` keyword argument | |
| labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True) | |
| # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore | |
| # padding in the loss. | |
| if padding == "max_length" and data_args.ignore_pad_token_for_loss: | |
| labels["input_ids"] = [ | |
| [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
| ] | |
| model_inputs["labels"] = labels["input_ids"] | |
| return model_inputs | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| if training_args.do_eval: | |
| max_target_length = data_args.val_max_target_length | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_dataset = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| if training_args.do_predict: | |
| max_target_length = data_args.val_max_target_length | |
| if "test" not in raw_datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_dataset = raw_datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
| predict_dataset = predict_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| # Data collator | |
| label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
| if data_args.pad_to_max_length: | |
| data_collator = default_data_collator | |
| else: | |
| data_collator = DataCollatorForSeq2Seq( | |
| tokenizer, | |
| model=model, | |
| label_pad_token_id=label_pad_token_id, | |
| pad_to_multiple_of=8 if training_args.fp16 else None, | |
| ) | |
| # Metric | |
| metric = evaluate.load("sacrebleu") | |
| def postprocess_text(preds, labels): | |
| preds = [pred.strip() for pred in preds] | |
| labels = [[label.strip()] for label in labels] | |
| return preds, labels | |
| def compute_metrics(eval_preds): | |
| preds, labels = eval_preds | |
| if isinstance(preds, tuple): | |
| preds = preds[0] | |
| # Replace -100s used for padding as we can't decode them | |
| preds = np.where(preds != -100, preds, tokenizer.pad_token_id) | |
| decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| # Some simple post-processing | |
| decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
| result = metric.compute(predictions=decoded_preds, references=decoded_labels) | |
| result = {"bleu": result["score"]} | |
| prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | |
| result["gen_len"] = np.mean(prediction_lens) | |
| result = {k: round(v, 4) for k, v in result.items()} | |
| return result | |
| # Initialize our Trainer | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset if training_args.do_train else None, | |
| eval_dataset=eval_dataset if training_args.do_eval else None, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| compute_metrics=compute_metrics if training_args.predict_with_generate else None, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| results = {} | |
| max_length = ( | |
| training_args.generation_max_length | |
| if training_args.generation_max_length is not None | |
| else data_args.val_max_target_length | |
| ) | |
| num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate(max_length=max_length, num_beams=num_beams, metric_key_prefix="eval") | |
| max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
| metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| predict_results = trainer.predict( | |
| predict_dataset, metric_key_prefix="predict", max_length=max_length, num_beams=num_beams | |
| ) | |
| metrics = predict_results.metrics | |
| max_predict_samples = ( | |
| data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| if trainer.is_world_process_zero(): | |
| if training_args.predict_with_generate: | |
| predictions = predict_results.predictions | |
| predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id) | |
| predictions = tokenizer.batch_decode( | |
| predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
| ) | |
| predictions = [pred.strip() for pred in predictions] | |
| output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt") | |
| with open(output_prediction_file, "w", encoding="utf-8") as writer: | |
| writer.write("\n".join(predictions)) | |
| kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"} | |
| if data_args.dataset_name is not None: | |
| kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| kwargs["dataset_args"] = data_args.dataset_config_name | |
| kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| kwargs["dataset"] = data_args.dataset_name | |
| languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None] | |
| if len(languages) > 0: | |
| kwargs["language"] = languages | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| return results | |
| def _mp_fn(index): | |
| # For xla_spawn (TPUs) | |
| main() | |
| if __name__ == "__main__": | |
| main() | |