Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for summarization. | |
| """ | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import sys | |
| import time | |
| import warnings | |
| from dataclasses import asdict, dataclass, field | |
| from enum import Enum | |
| from functools import partial | |
| from pathlib import Path | |
| from typing import Callable, Optional | |
| import datasets | |
| import evaluate | |
| import jax | |
| import jax.numpy as jnp | |
| import nltk # Here to have a nice missing dependency error message early on | |
| import numpy as np | |
| import optax | |
| from datasets import Dataset, load_dataset | |
| from filelock import FileLock | |
| from flax import jax_utils, traverse_util | |
| from flax.jax_utils import pad_shard_unpad, unreplicate | |
| from flax.training import train_state | |
| from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
| from huggingface_hub import Repository, create_repo | |
| from tqdm import tqdm | |
| import transformers | |
| from transformers import ( | |
| CONFIG_MAPPING, | |
| FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
| AutoConfig, | |
| AutoTokenizer, | |
| FlaxAutoModelForSeq2SeqLM, | |
| HfArgumentParser, | |
| is_tensorboard_available, | |
| ) | |
| from transformers.utils import is_offline_mode, send_example_telemetry | |
| logger = logging.getLogger(__name__) | |
| try: | |
| nltk.data.find("tokenizers/punkt") | |
| except (LookupError, OSError): | |
| if is_offline_mode(): | |
| raise LookupError( | |
| "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" | |
| ) | |
| with FileLock(".lock") as lock: | |
| nltk.download("punkt", quiet=True) | |
| MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| class TrainingArguments: | |
| output_dir: str = field( | |
| metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
| ) | |
| overwrite_output_dir: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Overwrite the content of the output directory. " | |
| "Use this to continue training if output_dir points to a checkpoint directory." | |
| ) | |
| }, | |
| ) | |
| do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
| do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
| do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) | |
| per_device_train_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
| ) | |
| per_device_eval_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
| ) | |
| learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
| weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
| adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
| adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
| adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
| label_smoothing_factor: float = field( | |
| default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} | |
| ) | |
| adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
| num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
| warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
| logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
| save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
| eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
| seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
| push_to_hub: bool = field( | |
| default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
| ) | |
| hub_model_id: str = field( | |
| default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
| ) | |
| hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
| gradient_checkpointing: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.output_dir is not None: | |
| self.output_dir = os.path.expanduser(self.output_dir) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
| the token values by removing their value. | |
| """ | |
| d = asdict(self) | |
| for k, v in d.items(): | |
| if isinstance(v, Enum): | |
| d[k] = v.value | |
| if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
| d[k] = [x.value for x in v] | |
| if k.endswith("_token"): | |
| d[k] = f"<{k.upper()}>" | |
| return d | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
| """ | |
| model_name_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." | |
| ) | |
| }, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| dtype: Optional[str] = field( | |
| default="float32", | |
| metadata={ | |
| "help": ( | |
| "Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
| " `[float32, float16, bfloat16]`." | |
| ) | |
| }, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| text_column: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, | |
| ) | |
| summary_column: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."}, | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=1024, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
| "This argument is also used to override the `max_length` param of `model.generate`, which is used " | |
| "during evaluation." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| source_prefix: Optional[str] = field( | |
| default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
| ) | |
| predict_with_generate: bool = field( | |
| default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} | |
| ) | |
| num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " | |
| "which is used during evaluation." | |
| ) | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| and self.test_file is None | |
| ): | |
| raise ValueError("Need either a dataset name or a training, validation, or test file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.test_file is not None: | |
| extension = self.test_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
| if self.val_max_target_length is None: | |
| self.val_max_target_length = self.max_target_length | |
| summarization_name_mapping = { | |
| "amazon_reviews_multi": ("review_body", "review_title"), | |
| "big_patent": ("description", "abstract"), | |
| "cnn_dailymail": ("article", "highlights"), | |
| "orange_sum": ("text", "summary"), | |
| "pn_summary": ("article", "summary"), | |
| "psc": ("extract_text", "summary_text"), | |
| "samsum": ("dialogue", "summary"), | |
| "thaisum": ("body", "summary"), | |
| "xglue": ("news_body", "news_title"), | |
| "xsum": ("document", "summary"), | |
| "wiki_summary": ("article", "highlights"), | |
| } | |
| class TrainState(train_state.TrainState): | |
| dropout_rng: jnp.ndarray | |
| def replicate(self): | |
| return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
| def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True): | |
| """ | |
| Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, | |
| and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. | |
| """ | |
| if shuffle: | |
| batch_idx = jax.random.permutation(rng, len(dataset)) | |
| batch_idx = np.asarray(batch_idx) | |
| else: | |
| batch_idx = np.arange(len(dataset)) | |
| if drop_last: | |
| steps_per_epoch = len(dataset) // batch_size | |
| batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
| batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) | |
| else: | |
| steps_per_epoch = math.ceil(len(dataset) / batch_size) | |
| batch_idx = np.array_split(batch_idx, steps_per_epoch) | |
| for idx in batch_idx: | |
| batch = dataset[idx] | |
| batch = {k: np.array(v) for k, v in batch.items()} | |
| yield batch | |
| def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): | |
| summary_writer.scalar("train_time", train_time, step) | |
| train_metrics = get_metrics(train_metrics) | |
| for key, vals in train_metrics.items(): | |
| tag = f"train_{key}" | |
| for i, val in enumerate(vals): | |
| summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
| for metric_name, value in eval_metrics.items(): | |
| summary_writer.scalar(f"eval_{metric_name}", value, step) | |
| def create_learning_rate_fn( | |
| train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
| ) -> Callable[[int], jnp.array]: | |
| """Returns a linear warmup, linear_decay learning rate function.""" | |
| steps_per_epoch = train_ds_size // train_batch_size | |
| num_train_steps = steps_per_epoch * num_train_epochs | |
| warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
| decay_fn = optax.linear_schedule( | |
| init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
| ) | |
| schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
| return schedule_fn | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_summarization", model_args, data_args, framework="flax") | |
| if ( | |
| os.path.exists(training_args.output_dir) | |
| and os.listdir(training_args.output_dir) | |
| and training_args.do_train | |
| and not training_args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
| if jax.process_index() == 0: | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| transformers.utils.logging.set_verbosity_error() | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Handle the repository creation | |
| if training_args.push_to_hub: | |
| # Retrieve of infer repo_name | |
| repo_name = training_args.hub_model_id | |
| if repo_name is None: | |
| repo_name = Path(training_args.output_dir).absolute().name | |
| # Create repo and retrieve repo_id | |
| repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id | |
| # Clone repo locally | |
| repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) | |
| # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files this script will use the first column for the full texts and the second column for the | |
| # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). | |
| # | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| keep_in_memory=False, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| dataset = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # Load pretrained model and tokenizer | |
| if model_args.config_name: | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| elif model_args.model_name_or_path: | |
| config = AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| else: | |
| config = CONFIG_MAPPING[model_args.model_type]() | |
| logger.warning("You are instantiating a new config instance from scratch.") | |
| if model_args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| elif model_args.model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| else: | |
| raise ValueError( | |
| "You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
| "You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
| ) | |
| if model_args.model_name_or_path: | |
| model = FlaxAutoModelForSeq2SeqLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| else: | |
| model = FlaxAutoModelForSeq2SeqLM.from_config( | |
| config, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| if training_args.gradient_checkpointing: | |
| model.enable_gradient_checkpointing() | |
| if model.config.decoder_start_token_id is None: | |
| raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | |
| prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| if training_args.do_train: | |
| if "train" not in dataset: | |
| raise ValueError("--do_train requires a train dataset") | |
| column_names = dataset["train"].column_names | |
| elif training_args.do_eval: | |
| if "validation" not in dataset: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| column_names = dataset["validation"].column_names | |
| elif training_args.do_predict: | |
| if "test" not in dataset: | |
| raise ValueError("--do_predict requires a test dataset") | |
| column_names = dataset["test"].column_names | |
| else: | |
| logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
| return | |
| # Get the column names for input/target. | |
| dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) | |
| if data_args.text_column is None: | |
| text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
| else: | |
| text_column = data_args.text_column | |
| if text_column not in column_names: | |
| raise ValueError( | |
| f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| if data_args.summary_column is None: | |
| summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
| else: | |
| summary_column = data_args.summary_column | |
| if summary_column not in column_names: | |
| raise ValueError( | |
| f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| # Temporarily set max_target_length for training. | |
| max_target_length = data_args.max_target_length | |
| # In Flax, for seq2seq models we need to pass `decoder_input_ids` | |
| # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here | |
| # for that dynamically import the `shift_tokens_right` function from the model file | |
| model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"]) | |
| shift_tokens_right_fn = getattr(model_module, "shift_tokens_right") | |
| # Setting padding="max_length" as we need fixed length inputs for jitted functions | |
| def preprocess_function(examples): | |
| inputs = examples[text_column] | |
| targets = examples[summary_column] | |
| inputs = [prefix + inp for inp in inputs] | |
| model_inputs = tokenizer( | |
| inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" | |
| ) | |
| # Setup the tokenizer for targets | |
| labels = tokenizer( | |
| text_target=targets, | |
| max_length=max_target_length, | |
| padding="max_length", | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| model_inputs["labels"] = labels["input_ids"] | |
| decoder_input_ids = shift_tokens_right_fn( | |
| labels["input_ids"], config.pad_token_id, config.decoder_start_token_id | |
| ) | |
| model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) | |
| # We need decoder_attention_mask so we can ignore pad tokens from loss | |
| model_inputs["decoder_attention_mask"] = labels["attention_mask"] | |
| return model_inputs | |
| if training_args.do_train: | |
| train_dataset = dataset["train"] | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| train_dataset = train_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| if training_args.do_eval: | |
| max_target_length = data_args.val_max_target_length | |
| eval_dataset = dataset["validation"] | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| eval_dataset = eval_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| if training_args.do_predict: | |
| max_target_length = data_args.val_max_target_length | |
| predict_dataset = dataset["test"] | |
| if data_args.max_predict_samples is not None: | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| predict_dataset = predict_dataset.map( | |
| preprocess_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| # Metric | |
| metric = evaluate.load("rouge") | |
| def postprocess_text(preds, labels): | |
| preds = [pred.strip() for pred in preds] | |
| labels = [label.strip() for label in labels] | |
| # rougeLSum expects newline after each sentence | |
| preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] | |
| labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] | |
| return preds, labels | |
| def compute_metrics(preds, labels): | |
| decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| # Some simple post-processing | |
| decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
| result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) | |
| result = {k: round(v * 100, 4) for k, v in result.items()} | |
| prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | |
| result["gen_len"] = np.mean(prediction_lens) | |
| return result | |
| # Enable tensorboard only on the master node | |
| has_tensorboard = is_tensorboard_available() | |
| if has_tensorboard and jax.process_index() == 0: | |
| try: | |
| from flax.metrics.tensorboard import SummaryWriter | |
| summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
| except ImportError as ie: | |
| has_tensorboard = False | |
| logger.warning( | |
| f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
| ) | |
| else: | |
| logger.warning( | |
| "Unable to display metrics through TensorBoard because the package is not installed: " | |
| "Please run pip install tensorboard to enable." | |
| ) | |
| # Initialize our training | |
| rng = jax.random.PRNGKey(training_args.seed) | |
| rng, dropout_rng = jax.random.split(rng) | |
| # Store some constant | |
| num_epochs = int(training_args.num_train_epochs) | |
| train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
| per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
| eval_batch_size = per_device_eval_batch_size * jax.device_count() | |
| steps_per_epoch = len(train_dataset) // train_batch_size | |
| total_train_steps = steps_per_epoch * num_epochs | |
| # Create learning rate schedule | |
| linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
| len(train_dataset), | |
| train_batch_size, | |
| training_args.num_train_epochs, | |
| training_args.warmup_steps, | |
| training_args.learning_rate, | |
| ) | |
| # We use Optax's "masking" functionality to not apply weight decay | |
| # to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
| # mask boolean with the same structure as the parameters. | |
| # The mask is True for parameters that should be decayed. | |
| def decay_mask_fn(params): | |
| flat_params = traverse_util.flatten_dict(params) | |
| # find out all LayerNorm parameters | |
| layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
| layer_norm_named_params = { | |
| layer[-2:] | |
| for layer_norm_name in layer_norm_candidates | |
| for layer in flat_params.keys() | |
| if layer_norm_name in "".join(layer).lower() | |
| } | |
| flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
| return traverse_util.unflatten_dict(flat_mask) | |
| # create adam optimizer | |
| adamw = optax.adamw( | |
| learning_rate=linear_decay_lr_schedule_fn, | |
| b1=training_args.adam_beta1, | |
| b2=training_args.adam_beta2, | |
| eps=training_args.adam_epsilon, | |
| weight_decay=training_args.weight_decay, | |
| mask=decay_mask_fn, | |
| ) | |
| # Setup train state | |
| state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) | |
| # label smoothed cross entropy | |
| def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): | |
| """ | |
| The label smoothing implementation is adapted from Flax's official example: | |
| https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 | |
| """ | |
| vocab_size = logits.shape[-1] | |
| confidence = 1.0 - label_smoothing_factor | |
| low_confidence = (1.0 - confidence) / (vocab_size - 1) | |
| normalizing_constant = -( | |
| confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) | |
| ) | |
| soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) | |
| loss = optax.softmax_cross_entropy(logits, soft_labels) | |
| loss = loss - normalizing_constant | |
| # ignore padded tokens from loss | |
| loss = loss * padding_mask | |
| loss = loss.sum() | |
| num_labels = padding_mask.sum() | |
| return loss, num_labels | |
| # Define gradient update step fn | |
| def train_step(state, batch, label_smoothing_factor=0.0): | |
| dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
| def compute_loss(params): | |
| labels = batch.pop("labels") | |
| logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
| loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
| return loss, num_labels | |
| grad_fn = jax.value_and_grad(compute_loss, has_aux=True) | |
| (loss, num_labels), grad = grad_fn(state.params) | |
| num_labels = jax.lax.psum(num_labels, "batch") | |
| # true loss = total loss / total samples | |
| loss = jax.lax.psum(loss, "batch") | |
| loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) | |
| # true grad = total grad / total samples | |
| grad = jax.lax.psum(grad, "batch") | |
| grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) | |
| new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) | |
| metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
| return new_state, metrics | |
| # Define eval fn | |
| def eval_step(params, batch, label_smoothing_factor=0.0): | |
| labels = batch.pop("labels") | |
| logits = model(**batch, params=params, train=False)[0] | |
| loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) | |
| num_labels = jax.lax.psum(num_labels, "batch") | |
| # true loss = total loss / total samples | |
| loss = jax.lax.psum(loss, "batch") | |
| loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) | |
| metrics = {"loss": loss} | |
| return metrics | |
| # Define generation function | |
| max_length = ( | |
| data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length | |
| ) | |
| num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams | |
| gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
| def generate_step(params, batch): | |
| model.params = params | |
| output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) | |
| return output_ids.sequences | |
| # Create parallel version of the train and eval step | |
| p_train_step = jax.pmap( | |
| partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) | |
| ) | |
| p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") | |
| p_generate_step = jax.pmap(generate_step, "batch") | |
| # Replicate the train state on each device | |
| state = state.replicate() | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {num_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") | |
| logger.info(f" Total optimization steps = {total_train_steps}") | |
| train_time = 0 | |
| epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| train_start = time.time() | |
| # Create sampling rng | |
| rng, input_rng = jax.random.split(rng) | |
| train_metrics = [] | |
| # Generate an epoch by shuffling sampling indices from the train dataset | |
| train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) | |
| steps_per_epoch = len(train_dataset) // train_batch_size | |
| # train | |
| for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): | |
| batch = next(train_loader) | |
| batch = shard(batch) | |
| state, train_metric = p_train_step(state, batch) | |
| train_metrics.append(train_metric) | |
| train_time += time.time() - train_start | |
| train_metric = unreplicate(train_metric) | |
| epochs.write( | |
| f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" | |
| f" {train_metric['learning_rate']})" | |
| ) | |
| # ======================== Evaluating ============================== | |
| eval_metrics = [] | |
| eval_preds = [] | |
| eval_labels = [] | |
| eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) | |
| eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) | |
| for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): | |
| # Model forward | |
| batch = next(eval_loader) | |
| labels = batch["labels"] | |
| metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
| state.params, batch, min_device_batch=per_device_eval_batch_size | |
| ) | |
| eval_metrics.append(metrics) | |
| # generation | |
| if data_args.predict_with_generate: | |
| generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch) | |
| eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
| eval_labels.extend(labels) | |
| # normalize eval metrics | |
| eval_metrics = get_metrics(eval_metrics) | |
| eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) | |
| # compute ROUGE metrics | |
| rouge_desc = "" | |
| if data_args.predict_with_generate: | |
| rouge_metrics = compute_metrics(eval_preds, eval_labels) | |
| eval_metrics.update(rouge_metrics) | |
| rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()]) | |
| # Print metrics and update progress bar | |
| desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})" | |
| epochs.write(desc) | |
| epochs.desc = desc | |
| # Save metrics | |
| if has_tensorboard and jax.process_index() == 0: | |
| cur_step = epoch * (len(train_dataset) // train_batch_size) | |
| write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) | |
| # save checkpoint after each epoch and push checkpoint to the hub | |
| if jax.process_index() == 0: | |
| params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) | |
| model.save_pretrained(training_args.output_dir, params=params) | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) | |
| # ======================== Prediction loop ============================== | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| pred_metrics = [] | |
| pred_generations = [] | |
| pred_labels = [] | |
| pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size, drop_last=False) | |
| pred_steps = math.ceil(len(predict_dataset) / eval_batch_size) | |
| for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): | |
| # Model forward | |
| batch = next(pred_loader) | |
| labels = batch["labels"] | |
| metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
| state.params, batch, min_device_batch=per_device_eval_batch_size | |
| ) | |
| pred_metrics.append(metrics) | |
| # generation | |
| if data_args.predict_with_generate: | |
| generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch) | |
| pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
| pred_labels.extend(labels) | |
| # normalize prediction metrics | |
| pred_metrics = get_metrics(pred_metrics) | |
| pred_metrics = jax.tree_util.tree_map(jnp.mean, pred_metrics) | |
| # compute ROUGE metrics | |
| rouge_desc = "" | |
| if data_args.predict_with_generate: | |
| rouge_metrics = compute_metrics(pred_generations, pred_labels) | |
| pred_metrics.update(rouge_metrics) | |
| rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()]) | |
| # Print metrics | |
| desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})" | |
| logger.info(desc) | |
| # save final metrics in json | |
| if jax.process_index() == 0: | |
| rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()} | |
| path = os.path.join(training_args.output_dir, "test_results.json") | |
| with open(path, "w") as f: | |
| json.dump(rouge_metrics, f, indent=4, sort_keys=True) | |
| if __name__ == "__main__": | |
| main() | |