Spaces:
Paused
Paused
| import torch | |
| from TTS.vocoder.configs import WavegradConfig | |
| from TTS.vocoder.layers.wavegrad import DBlock, FiLM, PositionalEncoding, UBlock | |
| from TTS.vocoder.models.wavegrad import Wavegrad, WavegradArgs | |
| def test_positional_encoding(): | |
| layer = PositionalEncoding(50) | |
| inp = torch.rand(32, 50, 100) | |
| nl = torch.rand(32) | |
| o = layer(inp, nl) | |
| assert o.shape[0] == 32 | |
| assert o.shape[1] == 50 | |
| assert o.shape[2] == 100 | |
| assert isinstance(o, torch.FloatTensor) | |
| def test_film(): | |
| layer = FiLM(50, 76) | |
| inp = torch.rand(32, 50, 100) | |
| nl = torch.rand(32) | |
| shift, scale = layer(inp, nl) | |
| assert shift.shape[0] == 32 | |
| assert shift.shape[1] == 76 | |
| assert shift.shape[2] == 100 | |
| assert isinstance(shift, torch.FloatTensor) | |
| assert scale.shape[0] == 32 | |
| assert scale.shape[1] == 76 | |
| assert scale.shape[2] == 100 | |
| assert isinstance(scale, torch.FloatTensor) | |
| layer.apply_weight_norm() | |
| layer.remove_weight_norm() | |
| def test_ublock(): | |
| inp1 = torch.rand(32, 50, 100) | |
| inp2 = torch.rand(32, 50, 50) | |
| nl = torch.rand(32) | |
| layer_film = FiLM(50, 100) | |
| layer = UBlock(50, 100, 2, [1, 2, 4, 8]) | |
| scale, shift = layer_film(inp1, nl) | |
| o = layer(inp2, shift, scale) | |
| assert o.shape[0] == 32 | |
| assert o.shape[1] == 100 | |
| assert o.shape[2] == 100 | |
| assert isinstance(o, torch.FloatTensor) | |
| layer.apply_weight_norm() | |
| layer.remove_weight_norm() | |
| def test_dblock(): | |
| inp = torch.rand(32, 50, 130) | |
| layer = DBlock(50, 100, 2) | |
| o = layer(inp) | |
| assert o.shape[0] == 32 | |
| assert o.shape[1] == 100 | |
| assert o.shape[2] == 65 | |
| assert isinstance(o, torch.FloatTensor) | |
| layer.apply_weight_norm() | |
| layer.remove_weight_norm() | |
| def test_wavegrad_forward(): | |
| x = torch.rand(32, 1, 20 * 300) | |
| c = torch.rand(32, 80, 20) | |
| noise_scale = torch.rand(32) | |
| args = WavegradArgs( | |
| in_channels=80, | |
| out_channels=1, | |
| upsample_factors=[5, 5, 3, 2, 2], | |
| upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], | |
| ) | |
| config = WavegradConfig(model_params=args) | |
| model = Wavegrad(config) | |
| o = model.forward(x, c, noise_scale) | |
| assert o.shape[0] == 32 | |
| assert o.shape[1] == 1 | |
| assert o.shape[2] == 20 * 300 | |
| assert isinstance(o, torch.FloatTensor) | |
| model.apply_weight_norm() | |
| model.remove_weight_norm() | |