Spaces:
Paused
Paused
| import os | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.config import BaseAudioConfig, BaseDatasetConfig | |
| from TTS.tts.configs.fast_speech_config import FastSpeechConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models.forward_tts import ForwardTTS | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.utils.audio import AudioProcessor | |
| from TTS.utils.manage import ModelManager | |
| output_path = os.path.dirname(os.path.abspath(__file__)) | |
| # init configs | |
| dataset_config = BaseDatasetConfig( | |
| formatter="ljspeech", | |
| meta_file_train="metadata.csv", | |
| # meta_file_attn_mask=os.path.join(output_path, "../LJSpeech-1.1/metadata_attn_mask.txt"), | |
| path=os.path.join(output_path, "../LJSpeech-1.1/"), | |
| ) | |
| audio_config = BaseAudioConfig( | |
| sample_rate=22050, | |
| do_trim_silence=True, | |
| trim_db=60.0, | |
| signal_norm=False, | |
| mel_fmin=0.0, | |
| mel_fmax=8000, | |
| spec_gain=1.0, | |
| log_func="np.log", | |
| ref_level_db=20, | |
| preemphasis=0.0, | |
| ) | |
| config = FastSpeechConfig( | |
| run_name="fast_speech_ljspeech", | |
| audio=audio_config, | |
| batch_size=32, | |
| eval_batch_size=16, | |
| num_loader_workers=8, | |
| num_eval_loader_workers=4, | |
| compute_input_seq_cache=True, | |
| compute_f0=False, | |
| run_eval=True, | |
| test_delay_epochs=-1, | |
| epochs=1000, | |
| text_cleaner="english_cleaners", | |
| use_phonemes=True, | |
| phoneme_language="en-us", | |
| phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
| precompute_num_workers=8, | |
| print_step=50, | |
| print_eval=False, | |
| mixed_precision=False, | |
| max_seq_len=500000, | |
| output_path=output_path, | |
| datasets=[dataset_config], | |
| ) | |
| # compute alignments | |
| if not config.model_args.use_aligner: | |
| manager = ModelManager() | |
| model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA") | |
| # TODO: make compute_attention python callable | |
| os.system( | |
| f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true" | |
| ) | |
| # INITIALIZE THE AUDIO PROCESSOR | |
| # Audio processor is used for feature extraction and audio I/O. | |
| # It mainly serves to the dataloader and the training loggers. | |
| ap = AudioProcessor.init_from_config(config) | |
| # INITIALIZE THE TOKENIZER | |
| # Tokenizer is used to convert text to sequences of token IDs. | |
| # If characters are not defined in the config, default characters are passed to the config | |
| tokenizer, config = TTSTokenizer.init_from_config(config) | |
| # LOAD DATA SAMPLES | |
| # Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
| # You can define your custom sample loader returning the list of samples. | |
| # Or define your custom formatter and pass it to the `load_tts_samples`. | |
| # Check `TTS.tts.datasets.load_tts_samples` for more details. | |
| train_samples, eval_samples = load_tts_samples( | |
| dataset_config, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init the model | |
| model = ForwardTTS(config, ap, tokenizer) | |
| # init the trainer and π | |
| trainer = Trainer( | |
| TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
| ) | |
| trainer.fit() | |