Spaces:
Paused
Paused
| import os | |
| from trainer import Trainer, TrainerArgs | |
| from TTS.tts.configs.align_tts_config import AlignTTSConfig | |
| from TTS.tts.configs.shared_configs import BaseDatasetConfig | |
| from TTS.tts.datasets import load_tts_samples | |
| from TTS.tts.models.align_tts import AlignTTS | |
| from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
| from TTS.utils.audio import AudioProcessor | |
| output_path = os.path.dirname(os.path.abspath(__file__)) | |
| # init configs | |
| dataset_config = BaseDatasetConfig( | |
| formatter="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/") | |
| ) | |
| config = AlignTTSConfig( | |
| batch_size=32, | |
| eval_batch_size=16, | |
| num_loader_workers=4, | |
| num_eval_loader_workers=4, | |
| run_eval=True, | |
| test_delay_epochs=-1, | |
| epochs=1000, | |
| text_cleaner="english_cleaners", | |
| use_phonemes=False, | |
| phoneme_language="en-us", | |
| phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
| print_step=25, | |
| print_eval=True, | |
| mixed_precision=False, | |
| output_path=output_path, | |
| datasets=[dataset_config], | |
| ) | |
| # INITIALIZE THE AUDIO PROCESSOR | |
| # Audio processor is used for feature extraction and audio I/O. | |
| # It mainly serves to the dataloader and the training loggers. | |
| ap = AudioProcessor.init_from_config(config) | |
| # INITIALIZE THE TOKENIZER | |
| # Tokenizer is used to convert text to sequences of token IDs. | |
| # If characters are not defined in the config, default characters are passed to the config | |
| tokenizer, config = TTSTokenizer.init_from_config(config) | |
| # LOAD DATA SAMPLES | |
| # Each sample is a list of ```[text, audio_file_path, speaker_name]``` | |
| # You can define your custom sample loader returning the list of samples. | |
| # Or define your custom formatter and pass it to the `load_tts_samples`. | |
| # Check `TTS.tts.datasets.load_tts_samples` for more details. | |
| train_samples, eval_samples = load_tts_samples( | |
| dataset_config, | |
| eval_split=True, | |
| eval_split_max_size=config.eval_split_max_size, | |
| eval_split_size=config.eval_split_size, | |
| ) | |
| # init model | |
| model = AlignTTS(config, ap, tokenizer) | |
| # INITIALIZE THE TRAINER | |
| # Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training, | |
| # distributed training, etc. | |
| trainer = Trainer( | |
| TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples | |
| ) | |
| # AND... 3,2,1... 🚀 | |
| trainer.fit() | |