Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch ESM model. """ | |
| import unittest | |
| from transformers import EsmConfig, is_torch_available | |
| from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers.models.esm.modeling_esmfold import EsmForProteinFolding | |
| class EsmFoldModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=False, | |
| use_input_mask=True, | |
| use_token_type_ids=False, | |
| use_labels=False, | |
| vocab_size=19, | |
| hidden_size=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = self.get_config() | |
| return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def get_config(self): | |
| esmfold_config = { | |
| "trunk": { | |
| "num_blocks": 2, | |
| "sequence_state_dim": 64, | |
| "pairwise_state_dim": 16, | |
| "sequence_head_width": 4, | |
| "pairwise_head_width": 4, | |
| "position_bins": 4, | |
| "chunk_size": 16, | |
| "structure_module": { | |
| "ipa_dim": 16, | |
| "num_angles": 7, | |
| "num_blocks": 2, | |
| "num_heads_ipa": 4, | |
| "pairwise_dim": 16, | |
| "resnet_dim": 16, | |
| "sequence_dim": 48, | |
| }, | |
| }, | |
| "fp16_esm": False, | |
| "lddt_head_hid_dim": 16, | |
| } | |
| config = EsmConfig( | |
| vocab_size=33, | |
| hidden_size=self.hidden_size, | |
| pad_token_id=1, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| is_folding_model=True, | |
| esmfold_config=esmfold_config, | |
| ) | |
| return config | |
| def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): | |
| model = EsmForProteinFolding(config=config).float() | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.positions.shape, (2, self.batch_size, self.seq_length, 14, 3)) | |
| self.parent.assertEqual(result.angles.shape, (2, self.batch_size, self.seq_length, 7, 2)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class EsmFoldModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| test_mismatched_shapes = False | |
| all_model_classes = (EsmForProteinFolding,) if is_torch_available() else () | |
| all_generative_model_classes = () | |
| pipeline_model_mapping = {} if is_torch_available() else {} | |
| test_sequence_classification_problem_types = False | |
| def setUp(self): | |
| self.model_tester = EsmFoldModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_attention_outputs(self): | |
| pass | |
| def test_correct_missing_keys(self): | |
| pass | |
| def test_resize_embeddings_untied(self): | |
| pass | |
| def test_resize_tokens_embeddings(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_head_pruning(self): | |
| pass | |
| def test_head_pruning_integration(self): | |
| pass | |
| def test_head_pruning_save_load_from_config_init(self): | |
| pass | |
| def test_head_pruning_save_load_from_pretrained(self): | |
| pass | |
| def test_headmasking(self): | |
| pass | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_outputs_equivalence(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_feed_forward_chunking(self): | |
| pass | |
| def test_initialization(self): | |
| pass | |
| def test_torchscript_output_attentions(self): | |
| pass | |
| def test_torchscript_output_hidden_state(self): | |
| pass | |
| def test_torchscript_simple(self): | |
| pass | |
| def test_multi_gpu_data_parallel_forward(self): | |
| pass | |
| class EsmModelIntegrationTest(TestCasePlus): | |
| def test_inference_protein_folding(self): | |
| model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1").float() | |
| model.eval() | |
| input_ids = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) | |
| position_outputs = model(input_ids)["positions"] | |
| expected_slice = torch.tensor([2.5828, 0.7993, -10.9334], dtype=torch.float32) | |
| self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], expected_slice, atol=1e-4)) | |