Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for question answering using a slightly adapted version of the 🤗 Trainer. | |
| """ | |
| # You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
| import logging | |
| import os | |
| import sys | |
| import warnings | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| import datasets | |
| import evaluate | |
| from datasets import load_dataset | |
| from trainer_qa import QuestionAnsweringTrainer | |
| from utils_qa import postprocess_qa_predictions | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForQuestionAnswering, | |
| AutoTokenizer, | |
| DataCollatorWithPadding, | |
| EvalPrediction, | |
| HfArgumentParser, | |
| PreTrainedTokenizerFast, | |
| TrainingArguments, | |
| default_data_collator, | |
| set_seed, | |
| ) | |
| from transformers.trainer_utils import get_last_checkpoint | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| from transformers.utils.versions import require_version | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt") | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_seq_length: int = field( | |
| default=384, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
| " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| version_2_with_negative: bool = field( | |
| default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
| ) | |
| null_score_diff_threshold: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": ( | |
| "The threshold used to select the null answer: if the best answer has a score that is less than " | |
| "the score of the null answer minus this threshold, the null answer is selected for this example. " | |
| "Only useful when `version_2_with_negative=True`." | |
| ) | |
| }, | |
| ) | |
| doc_stride: int = field( | |
| default=128, | |
| metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
| ) | |
| n_best_size: int = field( | |
| default=20, | |
| metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
| ) | |
| max_answer_length: int = field( | |
| default=30, | |
| metadata={ | |
| "help": ( | |
| "The maximum length of an answer that can be generated. This is needed because the start " | |
| "and end predictions are not conditioned on one another." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| and self.test_file is None | |
| ): | |
| raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.test_file is not None: | |
| extension = self.test_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_qa", model_args, data_args) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Detecting last checkpoint. | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | |
| last_checkpoint = get_last_checkpoint(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty. " | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | |
| "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | |
| ) | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| field="data", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # Load pretrained model and tokenizer | |
| # | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=True, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| model = AutoModelForQuestionAnswering.from_pretrained( | |
| model_args.model_name_or_path, | |
| from_tf=bool(".ckpt" in model_args.model_name_or_path), | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # Tokenizer check: this script requires a fast tokenizer. | |
| if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
| raise ValueError( | |
| "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" | |
| " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" | |
| " this requirement" | |
| ) | |
| # Preprocessing the datasets. | |
| # Preprocessing is slighlty different for training and evaluation. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| else: | |
| column_names = raw_datasets["test"].column_names | |
| question_column_name = "question" if "question" in column_names else column_names[0] | |
| context_column_name = "context" if "context" in column_names else column_names[1] | |
| answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
| # Padding side determines if we do (question|context) or (context|question). | |
| pad_on_right = tokenizer.padding_side == "right" | |
| if data_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
| f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
| ) | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| # Training preprocessing | |
| def prepare_train_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding="max_length" if data_args.pad_to_max_length else False, | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # The offset mappings will give us a map from token to character position in the original context. This will | |
| # help us compute the start_positions and end_positions. | |
| offset_mapping = tokenized_examples.pop("offset_mapping") | |
| # Let's label those examples! | |
| tokenized_examples["start_positions"] = [] | |
| tokenized_examples["end_positions"] = [] | |
| for i, offsets in enumerate(offset_mapping): | |
| # We will label impossible answers with the index of the CLS token. | |
| input_ids = tokenized_examples["input_ids"][i] | |
| cls_index = input_ids.index(tokenizer.cls_token_id) | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| answers = examples[answer_column_name][sample_index] | |
| # If no answers are given, set the cls_index as answer. | |
| if len(answers["answer_start"]) == 0: | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Start/end character index of the answer in the text. | |
| start_char = answers["answer_start"][0] | |
| end_char = start_char + len(answers["text"][0]) | |
| # Start token index of the current span in the text. | |
| token_start_index = 0 | |
| while sequence_ids[token_start_index] != (1 if pad_on_right else 0): | |
| token_start_index += 1 | |
| # End token index of the current span in the text. | |
| token_end_index = len(input_ids) - 1 | |
| while sequence_ids[token_end_index] != (1 if pad_on_right else 0): | |
| token_end_index -= 1 | |
| # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). | |
| if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Otherwise move the token_start_index and token_end_index to the two ends of the answer. | |
| # Note: we could go after the last offset if the answer is the last word (edge case). | |
| while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: | |
| token_start_index += 1 | |
| tokenized_examples["start_positions"].append(token_start_index - 1) | |
| while offsets[token_end_index][1] >= end_char: | |
| token_end_index -= 1 | |
| tokenized_examples["end_positions"].append(token_end_index + 1) | |
| return tokenized_examples | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| # We will select sample from whole data if argument is specified | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| # Create train feature from dataset | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| prepare_train_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| if data_args.max_train_samples is not None: | |
| # Number of samples might increase during Feature Creation, We select only specified max samples | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| # Validation preprocessing | |
| def prepare_validation_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding="max_length" if data_args.pad_to_max_length else False, | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
| # corresponding example_id and we will store the offset mappings. | |
| tokenized_examples["example_id"] = [] | |
| for i in range(len(tokenized_examples["input_ids"])): | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| context_index = 1 if pad_on_right else 0 | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
| # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
| # position is part of the context or not. | |
| tokenized_examples["offset_mapping"][i] = [ | |
| (o if sequence_ids[k] == context_index else None) | |
| for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
| ] | |
| return tokenized_examples | |
| if training_args.do_eval: | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_examples = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| # We will select sample from whole data | |
| max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
| eval_examples = eval_examples.select(range(max_eval_samples)) | |
| # Validation Feature Creation | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| if data_args.max_eval_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| if training_args.do_predict: | |
| if "test" not in raw_datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_examples = raw_datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| # We will select sample from whole data | |
| predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
| # Predict Feature Creation | |
| with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
| predict_dataset = predict_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| if data_args.max_predict_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| # Data collator | |
| # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data | |
| # collator. | |
| data_collator = ( | |
| default_data_collator | |
| if data_args.pad_to_max_length | |
| else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None) | |
| ) | |
| # Post-processing: | |
| def post_processing_function(examples, features, predictions, stage="eval"): | |
| # Post-processing: we match the start logits and end logits to answers in the original context. | |
| predictions = postprocess_qa_predictions( | |
| examples=examples, | |
| features=features, | |
| predictions=predictions, | |
| version_2_with_negative=data_args.version_2_with_negative, | |
| n_best_size=data_args.n_best_size, | |
| max_answer_length=data_args.max_answer_length, | |
| null_score_diff_threshold=data_args.null_score_diff_threshold, | |
| output_dir=training_args.output_dir, | |
| log_level=log_level, | |
| prefix=stage, | |
| ) | |
| # Format the result to the format the metric expects. | |
| if data_args.version_2_with_negative: | |
| formatted_predictions = [ | |
| {"id": str(k), "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
| ] | |
| else: | |
| formatted_predictions = [{"id": str(k), "prediction_text": v} for k, v in predictions.items()] | |
| references = [{"id": str(ex["id"]), "answers": ex[answer_column_name]} for ex in examples] | |
| return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
| metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
| def compute_metrics(p: EvalPrediction): | |
| return metric.compute(predictions=p.predictions, references=p.label_ids) | |
| # Initialize our Trainer | |
| trainer = QuestionAnsweringTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset if training_args.do_train else None, | |
| eval_dataset=eval_dataset if training_args.do_eval else None, | |
| eval_examples=eval_examples if training_args.do_eval else None, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| post_process_function=post_processing_function, | |
| compute_metrics=compute_metrics, | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate() | |
| max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
| metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| # Prediction | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| results = trainer.predict(predict_dataset, predict_examples) | |
| metrics = results.metrics | |
| max_predict_samples = ( | |
| data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"} | |
| if data_args.dataset_name is not None: | |
| kwargs["dataset_tags"] = data_args.dataset_name | |
| if data_args.dataset_config_name is not None: | |
| kwargs["dataset_args"] = data_args.dataset_config_name | |
| kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | |
| else: | |
| kwargs["dataset"] = data_args.dataset_name | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(**kwargs) | |
| else: | |
| trainer.create_model_card(**kwargs) | |
| def _mp_fn(index): | |
| # For xla_spawn (TPUs) | |
| main() | |
| if __name__ == "__main__": | |
| main() | |