Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for question answering. | |
| """ | |
| # You can also adapt this script on your own question answering task. Pointers for this are left as comments. | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import time | |
| import warnings | |
| from dataclasses import asdict, dataclass, field | |
| from enum import Enum | |
| from pathlib import Path | |
| from typing import Any, Callable, Dict, Optional, Tuple | |
| import datasets | |
| import evaluate | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import optax | |
| from datasets import load_dataset | |
| from flax import struct, traverse_util | |
| from flax.jax_utils import pad_shard_unpad, replicate, unreplicate | |
| from flax.training import train_state | |
| from flax.training.common_utils import get_metrics, onehot, shard | |
| from huggingface_hub import Repository, create_repo | |
| from tqdm import tqdm | |
| from utils_qa import postprocess_qa_predictions | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoTokenizer, | |
| EvalPrediction, | |
| FlaxAutoModelForQuestionAnswering, | |
| HfArgumentParser, | |
| PreTrainedTokenizerFast, | |
| is_tensorboard_available, | |
| ) | |
| from transformers.utils import check_min_version, send_example_telemetry | |
| logger = logging.getLogger(__name__) | |
| # Will error if the minimal version of Transformers is not installed. Remove at your own risks. | |
| check_min_version("4.34.0.dev0") | |
| Array = Any | |
| Dataset = datasets.arrow_dataset.Dataset | |
| PRNGKey = Any | |
| # region Arguments | |
| class TrainingArguments: | |
| output_dir: str = field( | |
| metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
| ) | |
| overwrite_output_dir: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Overwrite the content of the output directory. " | |
| "Use this to continue training if output_dir points to a checkpoint directory." | |
| ) | |
| }, | |
| ) | |
| do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
| do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
| do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) | |
| per_device_train_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
| ) | |
| per_device_eval_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
| ) | |
| learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
| weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
| adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
| adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
| adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
| adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
| num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
| warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
| logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
| save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
| eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
| seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
| push_to_hub: bool = field( | |
| default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
| ) | |
| hub_model_id: str = field( | |
| default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
| ) | |
| hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
| def __post_init__(self): | |
| if self.output_dir is not None: | |
| self.output_dir = os.path.expanduser(self.output_dir) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
| the token values by removing their value. | |
| """ | |
| d = asdict(self) | |
| for k, v in d.items(): | |
| if isinstance(v, Enum): | |
| d[k] = v.value | |
| if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
| d[k] = [x.value for x in v] | |
| if k.endswith("_token"): | |
| d[k] = f"<{k.upper()}>" | |
| return d | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| token: str = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " | |
| "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=None, | |
| metadata={ | |
| "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." | |
| }, | |
| ) | |
| trust_remote_code: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" | |
| "should only be set to `True` for repositories you trust and in which you have read the code, as it will" | |
| "execute code present on the Hub on your local machine." | |
| ) | |
| }, | |
| ) | |
| dtype: Optional[str] = field( | |
| default="float32", | |
| metadata={ | |
| "help": ( | |
| "Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
| " `[float32, float16, bfloat16]`." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_seq_length: int = field( | |
| default=384, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" | |
| " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| version_2_with_negative: bool = field( | |
| default=False, metadata={"help": "If true, some of the examples do not have an answer."} | |
| ) | |
| null_score_diff_threshold: float = field( | |
| default=0.0, | |
| metadata={ | |
| "help": ( | |
| "The threshold used to select the null answer: if the best answer has a score that is less than " | |
| "the score of the null answer minus this threshold, the null answer is selected for this example. " | |
| "Only useful when `version_2_with_negative=True`." | |
| ) | |
| }, | |
| ) | |
| doc_stride: int = field( | |
| default=128, | |
| metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, | |
| ) | |
| n_best_size: int = field( | |
| default=20, | |
| metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, | |
| ) | |
| max_answer_length: int = field( | |
| default=30, | |
| metadata={ | |
| "help": ( | |
| "The maximum length of an answer that can be generated. This is needed because the start " | |
| "and end predictions are not conditioned on one another." | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if ( | |
| self.dataset_name is None | |
| and self.train_file is None | |
| and self.validation_file is None | |
| and self.test_file is None | |
| ): | |
| raise ValueError("Need either a dataset name or a training/validation file/test_file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.test_file is not None: | |
| extension = self.test_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." | |
| # endregion | |
| # region Create a train state | |
| def create_train_state( | |
| model: FlaxAutoModelForQuestionAnswering, | |
| learning_rate_fn: Callable[[int], float], | |
| num_labels: int, | |
| training_args: TrainingArguments, | |
| ) -> train_state.TrainState: | |
| """Create initial training state.""" | |
| class TrainState(train_state.TrainState): | |
| """Train state with an Optax optimizer. | |
| The two functions below differ depending on whether the task is classification | |
| or regression. | |
| Args: | |
| logits_fn: Applied to last layer to obtain the logits. | |
| loss_fn: Function to compute the loss. | |
| """ | |
| logits_fn: Callable = struct.field(pytree_node=False) | |
| loss_fn: Callable = struct.field(pytree_node=False) | |
| # We use Optax's "masking" functionality to not apply weight decay | |
| # to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
| # mask boolean with the same structure as the parameters. | |
| # The mask is True for parameters that should be decayed. | |
| def decay_mask_fn(params): | |
| flat_params = traverse_util.flatten_dict(params) | |
| # find out all LayerNorm parameters | |
| layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
| layer_norm_named_params = { | |
| layer[-2:] | |
| for layer_norm_name in layer_norm_candidates | |
| for layer in flat_params.keys() | |
| if layer_norm_name in "".join(layer).lower() | |
| } | |
| flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
| return traverse_util.unflatten_dict(flat_mask) | |
| tx = optax.adamw( | |
| learning_rate=learning_rate_fn, | |
| b1=training_args.adam_beta1, | |
| b2=training_args.adam_beta2, | |
| eps=training_args.adam_epsilon, | |
| weight_decay=training_args.weight_decay, | |
| mask=decay_mask_fn, | |
| ) | |
| def cross_entropy_loss(logits, labels): | |
| start_loss = optax.softmax_cross_entropy(logits[0], onehot(labels[0], num_classes=num_labels)) | |
| end_loss = optax.softmax_cross_entropy(logits[1], onehot(labels[1], num_classes=num_labels)) | |
| xentropy = (start_loss + end_loss) / 2.0 | |
| return jnp.mean(xentropy) | |
| return TrainState.create( | |
| apply_fn=model.__call__, | |
| params=model.params, | |
| tx=tx, | |
| logits_fn=lambda logits: logits, | |
| loss_fn=cross_entropy_loss, | |
| ) | |
| # endregion | |
| # region Create learning rate function | |
| def create_learning_rate_fn( | |
| train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float | |
| ) -> Callable[[int], jnp.array]: | |
| """Returns a linear warmup, linear_decay learning rate function.""" | |
| steps_per_epoch = train_ds_size // train_batch_size | |
| num_train_steps = steps_per_epoch * num_train_epochs | |
| warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
| decay_fn = optax.linear_schedule( | |
| init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
| ) | |
| schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
| return schedule_fn | |
| # endregion | |
| # region train data iterator | |
| def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): | |
| """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" | |
| steps_per_epoch = len(dataset) // batch_size | |
| perms = jax.random.permutation(rng, len(dataset)) | |
| perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
| perms = perms.reshape((steps_per_epoch, batch_size)) | |
| for perm in perms: | |
| batch = dataset[perm] | |
| batch = {k: np.array(v) for k, v in batch.items()} | |
| batch = shard(batch) | |
| yield batch | |
| # endregion | |
| # region eval data iterator | |
| def eval_data_collator(dataset: Dataset, batch_size: int): | |
| """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" | |
| batch_idx = np.arange(len(dataset)) | |
| steps_per_epoch = math.ceil(len(dataset) / batch_size) | |
| batch_idx = np.array_split(batch_idx, steps_per_epoch) | |
| for idx in batch_idx: | |
| batch = dataset[idx] | |
| batch = {k: np.array(v) for k, v in batch.items()} | |
| yield batch | |
| # endregion | |
| def main(): | |
| # region Argument parsing | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| if model_args.use_auth_token is not None: | |
| warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) | |
| if model_args.token is not None: | |
| raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
| model_args.token = model_args.use_auth_token | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_qa", model_args, data_args, framework="flax") | |
| # endregion | |
| # region Logging | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
| if jax.process_index() == 0: | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| transformers.utils.logging.set_verbosity_error() | |
| # endregion | |
| # Handle the repository creation | |
| if training_args.push_to_hub: | |
| # Retrieve of infer repo_name | |
| repo_name = training_args.hub_model_id | |
| if repo_name is None: | |
| repo_name = Path(training_args.output_dir).absolute().name | |
| # Create repo and retrieve repo_id | |
| repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id | |
| # Clone repo locally | |
| repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) | |
| # region Load Data | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantee that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| raw_datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| else: | |
| # Loading the dataset from local csv or json file. | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| field="data", | |
| cache_dir=model_args.cache_dir, | |
| token=model_args.token, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # endregion | |
| # region Load pretrained model and tokenizer | |
| # | |
| # Load pretrained model and tokenizer | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=True, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| ) | |
| # endregion | |
| # region Tokenizer check: this script requires a fast tokenizer. | |
| if not isinstance(tokenizer, PreTrainedTokenizerFast): | |
| raise ValueError( | |
| "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" | |
| " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" | |
| " this requirement" | |
| ) | |
| # endregion | |
| # region Preprocessing the datasets | |
| # Preprocessing is slightly different for training and evaluation. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| else: | |
| column_names = raw_datasets["test"].column_names | |
| question_column_name = "question" if "question" in column_names else column_names[0] | |
| context_column_name = "context" if "context" in column_names else column_names[1] | |
| answer_column_name = "answers" if "answers" in column_names else column_names[2] | |
| # Padding side determines if we do (question|context) or (context|question). | |
| pad_on_right = tokenizer.padding_side == "right" | |
| if data_args.max_seq_length > tokenizer.model_max_length: | |
| logger.warning( | |
| f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" | |
| f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." | |
| ) | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| # Training preprocessing | |
| def prepare_train_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding="max_length", | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # The offset mappings will give us a map from token to character position in the original context. This will | |
| # help us compute the start_positions and end_positions. | |
| offset_mapping = tokenized_examples.pop("offset_mapping") | |
| # Let's label those examples! | |
| tokenized_examples["start_positions"] = [] | |
| tokenized_examples["end_positions"] = [] | |
| for i, offsets in enumerate(offset_mapping): | |
| # We will label impossible answers with the index of the CLS token. | |
| input_ids = tokenized_examples["input_ids"][i] | |
| cls_index = input_ids.index(tokenizer.cls_token_id) | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| answers = examples[answer_column_name][sample_index] | |
| # If no answers are given, set the cls_index as answer. | |
| if len(answers["answer_start"]) == 0: | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Start/end character index of the answer in the text. | |
| start_char = answers["answer_start"][0] | |
| end_char = start_char + len(answers["text"][0]) | |
| # Start token index of the current span in the text. | |
| token_start_index = 0 | |
| while sequence_ids[token_start_index] != (1 if pad_on_right else 0): | |
| token_start_index += 1 | |
| # End token index of the current span in the text. | |
| token_end_index = len(input_ids) - 1 | |
| while sequence_ids[token_end_index] != (1 if pad_on_right else 0): | |
| token_end_index -= 1 | |
| # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). | |
| if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): | |
| tokenized_examples["start_positions"].append(cls_index) | |
| tokenized_examples["end_positions"].append(cls_index) | |
| else: | |
| # Otherwise move the token_start_index and token_end_index to the two ends of the answer. | |
| # Note: we could go after the last offset if the answer is the last word (edge case). | |
| while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: | |
| token_start_index += 1 | |
| tokenized_examples["start_positions"].append(token_start_index - 1) | |
| while offsets[token_end_index][1] >= end_char: | |
| token_end_index -= 1 | |
| tokenized_examples["end_positions"].append(token_end_index + 1) | |
| return tokenized_examples | |
| processed_raw_datasets = {} | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| # We will select sample from whole data if agument is specified | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| # Create train feature from dataset | |
| train_dataset = train_dataset.map( | |
| prepare_train_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_train_samples is not None: | |
| # Number of samples might increase during Feature Creation, We select only specified max samples | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| processed_raw_datasets["train"] = train_dataset | |
| # Validation preprocessing | |
| def prepare_validation_features(examples): | |
| # Some of the questions have lots of whitespace on the left, which is not useful and will make the | |
| # truncation of the context fail (the tokenized question will take a lots of space). So we remove that | |
| # left whitespace | |
| examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] | |
| # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results | |
| # in one example possible giving several features when a context is long, each of those features having a | |
| # context that overlaps a bit the context of the previous feature. | |
| tokenized_examples = tokenizer( | |
| examples[question_column_name if pad_on_right else context_column_name], | |
| examples[context_column_name if pad_on_right else question_column_name], | |
| truncation="only_second" if pad_on_right else "only_first", | |
| max_length=max_seq_length, | |
| stride=data_args.doc_stride, | |
| return_overflowing_tokens=True, | |
| return_offsets_mapping=True, | |
| padding="max_length", | |
| ) | |
| # Since one example might give us several features if it has a long context, we need a map from a feature to | |
| # its corresponding example. This key gives us just that. | |
| sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") | |
| # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the | |
| # corresponding example_id and we will store the offset mappings. | |
| tokenized_examples["example_id"] = [] | |
| for i in range(len(tokenized_examples["input_ids"])): | |
| # Grab the sequence corresponding to that example (to know what is the context and what is the question). | |
| sequence_ids = tokenized_examples.sequence_ids(i) | |
| context_index = 1 if pad_on_right else 0 | |
| # One example can give several spans, this is the index of the example containing this span of text. | |
| sample_index = sample_mapping[i] | |
| tokenized_examples["example_id"].append(examples["id"][sample_index]) | |
| # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token | |
| # position is part of the context or not. | |
| tokenized_examples["offset_mapping"][i] = [ | |
| (o if sequence_ids[k] == context_index else None) | |
| for k, o in enumerate(tokenized_examples["offset_mapping"][i]) | |
| ] | |
| return tokenized_examples | |
| if training_args.do_eval: | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_examples = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| # We will select sample from whole data | |
| max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) | |
| eval_examples = eval_examples.select(range(max_eval_samples)) | |
| # Validation Feature Creation | |
| eval_dataset = eval_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_eval_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| processed_raw_datasets["validation"] = eval_dataset | |
| if training_args.do_predict: | |
| if "test" not in raw_datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_examples = raw_datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| # We will select sample from whole data | |
| predict_examples = predict_examples.select(range(data_args.max_predict_samples)) | |
| # Predict Feature Creation | |
| predict_dataset = predict_examples.map( | |
| prepare_validation_features, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| if data_args.max_predict_samples is not None: | |
| # During Feature creation dataset samples might increase, we will select required samples again | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| processed_raw_datasets["test"] = predict_dataset | |
| # endregion | |
| # region Metrics and Post-processing: | |
| def post_processing_function(examples, features, predictions, stage="eval"): | |
| # Post-processing: we match the start logits and end logits to answers in the original context. | |
| predictions = postprocess_qa_predictions( | |
| examples=examples, | |
| features=features, | |
| predictions=predictions, | |
| version_2_with_negative=data_args.version_2_with_negative, | |
| n_best_size=data_args.n_best_size, | |
| max_answer_length=data_args.max_answer_length, | |
| null_score_diff_threshold=data_args.null_score_diff_threshold, | |
| output_dir=training_args.output_dir, | |
| prefix=stage, | |
| ) | |
| # Format the result to the format the metric expects. | |
| if data_args.version_2_with_negative: | |
| formatted_predictions = [ | |
| {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() | |
| ] | |
| else: | |
| formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] | |
| references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] | |
| return EvalPrediction(predictions=formatted_predictions, label_ids=references) | |
| metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") | |
| def compute_metrics(p: EvalPrediction): | |
| return metric.compute(predictions=p.predictions, references=p.label_ids) | |
| # Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor | |
| def create_and_fill_np_array(start_or_end_logits, dataset, max_len): | |
| """ | |
| Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor | |
| Args: | |
| start_or_end_logits(:obj:`tensor`): | |
| This is the output predictions of the model. We can only enter either start or end logits. | |
| eval_dataset: Evaluation dataset | |
| max_len(:obj:`int`): | |
| The maximum length of the output tensor. ( See the model.eval() part for more details ) | |
| """ | |
| step = 0 | |
| # create a numpy array and fill it with -100. | |
| logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float64) | |
| # Now since we have create an array now we will populate it with the outputs of the model. | |
| for i, output_logit in enumerate(start_or_end_logits): # populate columns | |
| # We have to fill it such that we have to take the whole tensor and replace it on the newly created array | |
| # And after every iteration we have to change the step | |
| batch_size = output_logit.shape[0] | |
| cols = output_logit.shape[1] | |
| if step + batch_size < len(dataset): | |
| logits_concat[step : step + batch_size, :cols] = output_logit | |
| else: | |
| logits_concat[step:, :cols] = output_logit[: len(dataset) - step] | |
| step += batch_size | |
| return logits_concat | |
| # endregion | |
| # region Training steps and logging init | |
| train_dataset = processed_raw_datasets["train"] | |
| eval_dataset = processed_raw_datasets["validation"] | |
| # Log a few random samples from the training set: | |
| for index in random.sample(range(len(train_dataset)), 3): | |
| logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") | |
| # Define a summary writer | |
| has_tensorboard = is_tensorboard_available() | |
| if has_tensorboard and jax.process_index() == 0: | |
| try: | |
| from flax.metrics.tensorboard import SummaryWriter | |
| summary_writer = SummaryWriter(training_args.output_dir) | |
| summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) | |
| except ImportError as ie: | |
| has_tensorboard = False | |
| logger.warning( | |
| f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
| ) | |
| else: | |
| logger.warning( | |
| "Unable to display metrics through TensorBoard because the package is not installed: " | |
| "Please run pip install tensorboard to enable." | |
| ) | |
| def write_train_metric(summary_writer, train_metrics, train_time, step): | |
| summary_writer.scalar("train_time", train_time, step) | |
| train_metrics = get_metrics(train_metrics) | |
| for key, vals in train_metrics.items(): | |
| tag = f"train_{key}" | |
| for i, val in enumerate(vals): | |
| summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
| def write_eval_metric(summary_writer, eval_metrics, step): | |
| for metric_name, value in eval_metrics.items(): | |
| summary_writer.scalar(f"eval_{metric_name}", value, step) | |
| num_epochs = int(training_args.num_train_epochs) | |
| rng = jax.random.PRNGKey(training_args.seed) | |
| dropout_rngs = jax.random.split(rng, jax.local_device_count()) | |
| train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() | |
| per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
| eval_batch_size = per_device_eval_batch_size * jax.local_device_count() | |
| # endregion | |
| # region Load model | |
| model = FlaxAutoModelForQuestionAnswering.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| cache_dir=model_args.cache_dir, | |
| revision=model_args.model_revision, | |
| token=model_args.token, | |
| trust_remote_code=model_args.trust_remote_code, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| ) | |
| learning_rate_fn = create_learning_rate_fn( | |
| len(train_dataset), | |
| train_batch_size, | |
| training_args.num_train_epochs, | |
| training_args.warmup_steps, | |
| training_args.learning_rate, | |
| ) | |
| state = create_train_state(model, learning_rate_fn, num_labels=max_seq_length, training_args=training_args) | |
| # endregion | |
| # region Define train step functions | |
| def train_step( | |
| state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey | |
| ) -> Tuple[train_state.TrainState, float]: | |
| """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" | |
| dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | |
| start_positions = batch.pop("start_positions") | |
| end_positions = batch.pop("end_positions") | |
| targets = (start_positions, end_positions) | |
| def loss_fn(params): | |
| logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True) | |
| loss = state.loss_fn(logits, targets) | |
| return loss | |
| grad_fn = jax.value_and_grad(loss_fn) | |
| loss, grad = grad_fn(state.params) | |
| grad = jax.lax.pmean(grad, "batch") | |
| new_state = state.apply_gradients(grads=grad) | |
| metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") | |
| return new_state, metrics, new_dropout_rng | |
| p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) | |
| # endregion | |
| # region Define eval step functions | |
| def eval_step(state, batch): | |
| logits = state.apply_fn(**batch, params=state.params, train=False) | |
| return state.logits_fn(logits) | |
| p_eval_step = jax.pmap(eval_step, axis_name="batch") | |
| # endregion | |
| # region Define train and eval loop | |
| logger.info(f"===== Starting training ({num_epochs} epochs) =====") | |
| train_time = 0 | |
| # make sure weights are replicated on each device | |
| state = replicate(state) | |
| train_time = 0 | |
| step_per_epoch = len(train_dataset) // train_batch_size | |
| total_steps = step_per_epoch * num_epochs | |
| epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
| for epoch in epochs: | |
| train_start = time.time() | |
| train_metrics = [] | |
| # Create sampling rng | |
| rng, input_rng = jax.random.split(rng) | |
| # train | |
| for step, batch in enumerate( | |
| tqdm( | |
| train_data_collator(input_rng, train_dataset, train_batch_size), | |
| total=step_per_epoch, | |
| desc="Training...", | |
| position=1, | |
| ), | |
| 1, | |
| ): | |
| state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) | |
| train_metrics.append(train_metric) | |
| cur_step = epoch * step_per_epoch + step | |
| if cur_step % training_args.logging_steps == 0 and cur_step > 0: | |
| # Save metrics | |
| train_metric = unreplicate(train_metric) | |
| train_time += time.time() - train_start | |
| if has_tensorboard and jax.process_index() == 0: | |
| write_train_metric(summary_writer, train_metrics, train_time, cur_step) | |
| epochs.write( | |
| f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" | |
| f" {train_metric['learning_rate']})" | |
| ) | |
| train_metrics = [] | |
| if ( | |
| training_args.do_eval | |
| and (cur_step % training_args.eval_steps == 0 or cur_step % step_per_epoch == 0) | |
| and cur_step > 0 | |
| ): | |
| eval_metrics = {} | |
| all_start_logits = [] | |
| all_end_logits = [] | |
| # evaluate | |
| for batch in tqdm( | |
| eval_data_collator(eval_dataset, eval_batch_size), | |
| total=math.ceil(len(eval_dataset) / eval_batch_size), | |
| desc="Evaluating ...", | |
| position=2, | |
| ): | |
| _ = batch.pop("example_id") | |
| _ = batch.pop("offset_mapping") | |
| predictions = pad_shard_unpad(p_eval_step)( | |
| state, batch, min_device_batch=per_device_eval_batch_size | |
| ) | |
| start_logits = np.array(predictions[0]) | |
| end_logits = np.array(predictions[1]) | |
| all_start_logits.append(start_logits) | |
| all_end_logits.append(end_logits) | |
| max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor | |
| # concatenate the numpy array | |
| start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) | |
| end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) | |
| # delete the list of numpy arrays | |
| del all_start_logits | |
| del all_end_logits | |
| outputs_numpy = (start_logits_concat, end_logits_concat) | |
| prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) | |
| eval_metrics = compute_metrics(prediction) | |
| logger.info(f"Step... ({cur_step}/{total_steps} | Evaluation metrics: {eval_metrics})") | |
| if has_tensorboard and jax.process_index() == 0: | |
| write_eval_metric(summary_writer, eval_metrics, cur_step) | |
| if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): | |
| # save checkpoint after each epoch and push checkpoint to the hub | |
| if jax.process_index() == 0: | |
| params = jax.device_get(unreplicate(state.params)) | |
| model.save_pretrained(training_args.output_dir, params=params) | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) | |
| epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" | |
| # endregion | |
| # Eval after training | |
| if training_args.do_eval: | |
| eval_metrics = {} | |
| all_start_logits = [] | |
| all_end_logits = [] | |
| eval_loader = eval_data_collator(eval_dataset, eval_batch_size) | |
| for batch in tqdm( | |
| eval_loader, total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2 | |
| ): | |
| _ = batch.pop("example_id") | |
| _ = batch.pop("offset_mapping") | |
| predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size) | |
| start_logits = np.array(predictions[0]) | |
| end_logits = np.array(predictions[1]) | |
| all_start_logits.append(start_logits) | |
| all_end_logits.append(end_logits) | |
| max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor | |
| # concatenate the numpy array | |
| start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) | |
| end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) | |
| # delete the list of numpy arrays | |
| del all_start_logits | |
| del all_end_logits | |
| outputs_numpy = (start_logits_concat, end_logits_concat) | |
| prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) | |
| eval_metrics = compute_metrics(prediction) | |
| if jax.process_index() == 0: | |
| eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} | |
| path = os.path.join(training_args.output_dir, "eval_results.json") | |
| with open(path, "w") as f: | |
| json.dump(eval_metrics, f, indent=4, sort_keys=True) | |
| if __name__ == "__main__": | |
| main() | |