Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2018 the HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import copy | |
| import unittest | |
| import numpy as np | |
| from transformers.data.data_collator import default_data_collator | |
| from transformers.testing_utils import require_accelerate, require_torch | |
| from transformers.trainer_utils import RemoveColumnsCollator, find_executable_batch_size | |
| from transformers.utils import is_torch_available | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from torch.utils.data import IterableDataset | |
| from transformers.modeling_outputs import SequenceClassifierOutput | |
| from transformers.tokenization_utils_base import BatchEncoding | |
| from transformers.trainer_pt_utils import ( | |
| DistributedLengthGroupedSampler, | |
| DistributedSamplerWithLoop, | |
| DistributedTensorGatherer, | |
| IterableDatasetShard, | |
| LabelSmoother, | |
| LengthGroupedSampler, | |
| SequentialDistributedSampler, | |
| ShardSampler, | |
| get_parameter_names, | |
| numpy_pad_and_concatenate, | |
| torch_pad_and_concatenate, | |
| ) | |
| class TstLayer(nn.Module): | |
| def __init__(self, hidden_size): | |
| super().__init__() | |
| self.linear1 = nn.Linear(hidden_size, hidden_size) | |
| self.ln1 = nn.LayerNorm(hidden_size) | |
| self.linear2 = nn.Linear(hidden_size, hidden_size) | |
| self.ln2 = nn.LayerNorm(hidden_size) | |
| self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
| def forward(self, x): | |
| h = self.ln1(nn.functional.relu(self.linear1(x))) | |
| h = nn.functional.relu(self.linear2(x)) | |
| return self.ln2(x + h + self.bias) | |
| class RandomIterableDataset(IterableDataset): | |
| # For testing, an iterable dataset of random length | |
| def __init__(self, p_stop=0.01, max_length=1000): | |
| self.p_stop = p_stop | |
| self.max_length = max_length | |
| self.generator = torch.Generator() | |
| def __iter__(self): | |
| count = 0 | |
| stop = False | |
| while not stop and count < self.max_length: | |
| yield count | |
| count += 1 | |
| number = torch.rand(1, generator=self.generator).item() | |
| stop = number < self.p_stop | |
| class TrainerUtilsTest(unittest.TestCase): | |
| def test_distributed_tensor_gatherer(self): | |
| # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1 | |
| world_size = 4 | |
| num_samples = 21 | |
| input_indices = [ | |
| [0, 1, 6, 7, 12, 13, 18, 19], | |
| [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1], | |
| [5, 11, 17, 2], | |
| ] | |
| predictions = np.random.normal(size=(num_samples, 13)) | |
| gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) | |
| for indices in input_indices: | |
| gatherer.add_arrays(predictions[indices]) | |
| result = gatherer.finalize() | |
| self.assertTrue(np.array_equal(result, predictions)) | |
| # With nested tensors | |
| gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) | |
| for indices in input_indices: | |
| gatherer.add_arrays([predictions[indices], [predictions[indices], predictions[indices]]]) | |
| result = gatherer.finalize() | |
| self.assertTrue(isinstance(result, list)) | |
| self.assertEqual(len(result), 2) | |
| self.assertTrue(isinstance(result[1], list)) | |
| self.assertEqual(len(result[1]), 2) | |
| self.assertTrue(np.array_equal(result[0], predictions)) | |
| self.assertTrue(np.array_equal(result[1][0], predictions)) | |
| self.assertTrue(np.array_equal(result[1][1], predictions)) | |
| def test_distributed_tensor_gatherer_different_shapes(self): | |
| # Simulate a result with a dataset of size 21, 4 processes and chunks of lengths 2, 3, 1 | |
| world_size = 4 | |
| num_samples = 21 | |
| input_indices = [ | |
| [0, 1, 6, 7, 12, 13, 18, 19], | |
| [2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 0, 1], | |
| [5, 11, 17, 2], | |
| ] | |
| sequence_lengths = [8, 10, 13] | |
| predictions = np.random.normal(size=(num_samples, 13)) | |
| gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) | |
| for indices, seq_length in zip(input_indices, sequence_lengths): | |
| gatherer.add_arrays(predictions[indices, :seq_length]) | |
| result = gatherer.finalize() | |
| # Remove the extra samples added at the end for a round multiple of num processes. | |
| actual_indices = [input_indices[0], input_indices[1][:-2], input_indices[2][:-1]] | |
| for indices, seq_length in zip(actual_indices, sequence_lengths): | |
| self.assertTrue(np.array_equal(result[indices, :seq_length], predictions[indices, :seq_length])) | |
| # With nested tensors | |
| predictions = np.random.normal(size=(num_samples, 13)) | |
| gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) | |
| for indices, seq_length in zip(input_indices, sequence_lengths): | |
| gatherer.add_arrays([predictions[indices, :seq_length], predictions[indices]]) | |
| result = gatherer.finalize() | |
| for indices, seq_length in zip(actual_indices, sequence_lengths): | |
| self.assertTrue(np.array_equal(result[0][indices, :seq_length], predictions[indices, :seq_length])) | |
| self.assertTrue(np.array_equal(result[1], predictions)) | |
| # Check if works if varying seq_length is second | |
| gatherer = DistributedTensorGatherer(world_size=world_size, num_samples=num_samples) | |
| for indices, seq_length in zip(input_indices, sequence_lengths): | |
| gatherer.add_arrays([predictions[indices], predictions[indices, :seq_length]]) | |
| result = gatherer.finalize() | |
| self.assertTrue(np.array_equal(result[0], predictions)) | |
| for indices, seq_length in zip(actual_indices, sequence_lengths): | |
| self.assertTrue(np.array_equal(result[1][indices, :seq_length], predictions[indices, :seq_length])) | |
| def test_label_smoothing(self): | |
| epsilon = 0.1 | |
| num_labels = 12 | |
| random_logits = torch.randn(4, 5, num_labels) | |
| random_labels = torch.randint(0, num_labels, (4, 5)) | |
| loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1)) | |
| model_output = SequenceClassifierOutput(logits=random_logits) | |
| label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels) | |
| log_probs = -nn.functional.log_softmax(random_logits, dim=-1) | |
| expected_loss = (1 - epsilon) * loss + epsilon * log_probs.mean() | |
| self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss)) | |
| # With a few -100 labels | |
| random_labels[0, 1] = -100 | |
| random_labels[2, 1] = -100 | |
| random_labels[2, 3] = -100 | |
| loss = nn.functional.cross_entropy(random_logits.view(-1, num_labels), random_labels.view(-1)) | |
| model_output = SequenceClassifierOutput(logits=random_logits) | |
| label_smoothed_loss = LabelSmoother(0.1)(model_output, random_labels) | |
| log_probs = -nn.functional.log_softmax(random_logits, dim=-1) | |
| # Mask the log probs with the -100 labels | |
| log_probs[0, 1] = 0.0 | |
| log_probs[2, 1] = 0.0 | |
| log_probs[2, 3] = 0.0 | |
| expected_loss = (1 - epsilon) * loss + epsilon * log_probs.sum() / (num_labels * 17) | |
| self.assertTrue(torch.allclose(label_smoothed_loss, expected_loss)) | |
| def test_group_by_length(self): | |
| # Get some inputs of random lengths | |
| lengths = torch.randint(0, 25, (100,)).tolist() | |
| # Put one bigger than the others to check it ends up in first position | |
| lengths[32] = 50 | |
| indices = list(LengthGroupedSampler(4, lengths=lengths)) | |
| # The biggest element should be first | |
| self.assertEqual(lengths[indices[0]], 50) | |
| # The indices should be a permutation of range(100) | |
| self.assertEqual(sorted(indices), list(range(100))) | |
| def test_group_by_length_with_dict(self): | |
| # Get some inputs of random lengths | |
| data = [] | |
| for _ in range(6): | |
| input_ids = torch.randint(0, 25, (100,)).tolist() | |
| data.append({"input_ids": input_ids}) | |
| # Put one bigger than the others to check it ends up in first position | |
| data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist() | |
| indices = list(LengthGroupedSampler(4, dataset=data)) | |
| # The biggest element should be first | |
| self.assertEqual(len(data[indices[0]]["input_ids"]), 105) | |
| # The indices should be a permutation of range(6) | |
| self.assertEqual(sorted(indices), list(range(6))) | |
| def test_group_by_length_with_batch_encoding(self): | |
| # Get some inputs of random lengths | |
| data = [] | |
| for _ in range(6): | |
| input_ids = torch.randint(0, 25, (100,)).tolist() | |
| data.append(BatchEncoding({"input_ids": input_ids})) | |
| # Put one bigger than the others to check it ends up in first position | |
| data[3]["input_ids"] = torch.randint(0, 25, (105,)).tolist() | |
| indices = list(LengthGroupedSampler(4, dataset=data)) | |
| # The biggest element should be first | |
| self.assertEqual(len(data[indices[0]]["input_ids"]), 105) | |
| # The indices should be a permutation of range(6) | |
| self.assertEqual(sorted(indices), list(range(6))) | |
| def test_distributed_length_grouped(self): | |
| # Get some inputs of random lengths | |
| lengths = torch.randint(0, 25, (100,)).tolist() | |
| # Put one bigger than the others to check it ends up in first position | |
| lengths[32] = 50 | |
| indices_process_0 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=0, lengths=lengths)) | |
| indices_process_1 = list(DistributedLengthGroupedSampler(4, num_replicas=2, rank=1, lengths=lengths)) | |
| # The biggest element should be first | |
| self.assertEqual(lengths[indices_process_0[0]], 50) | |
| # The indices should be a permutation of range(100) | |
| self.assertEqual(sorted(indices_process_0 + indices_process_1), list(range(100))) | |
| def test_get_parameter_names(self): | |
| model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)])) | |
| # fmt: off | |
| self.assertEqual( | |
| get_parameter_names(model, [nn.LayerNorm]), | |
| ['0.linear1.weight', '0.linear1.bias', '0.linear2.weight', '0.linear2.bias', '0.bias', '1.0.linear1.weight', '1.0.linear1.bias', '1.0.linear2.weight', '1.0.linear2.bias', '1.0.bias', '1.1.linear1.weight', '1.1.linear1.bias', '1.1.linear2.weight', '1.1.linear2.bias', '1.1.bias'] | |
| ) | |
| # fmt: on | |
| def test_distributed_sampler_with_loop(self): | |
| batch_size = 16 | |
| for length in [23, 64, 123]: | |
| dataset = list(range(length)) | |
| shard1 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=0) | |
| shard2 = DistributedSamplerWithLoop(dataset, batch_size, num_replicas=2, rank=1) | |
| # Set seeds | |
| shard1.set_epoch(0) | |
| shard2.set_epoch(0) | |
| # Sample | |
| samples1 = list(shard1) | |
| samples2 = list(shard2) | |
| self.assertTrue(len(samples1) % batch_size == 0) | |
| self.assertTrue(len(samples2) % batch_size == 0) | |
| total = [] | |
| for sample1, sample2 in zip(samples1, samples2): | |
| total += [sample1, sample2] | |
| self.assertEqual(set(total[:length]), set(dataset)) | |
| self.assertEqual(set(total[length:]), set(total[: (len(total) - length)])) | |
| def test_sequential_distributed_sampler(self): | |
| batch_size = 16 | |
| for length in [23, 64, 123]: | |
| dataset = list(range(length)) | |
| shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0) | |
| shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1) | |
| # Sample | |
| samples1 = list(shard1) | |
| samples2 = list(shard2) | |
| total = samples1 + samples2 | |
| self.assertListEqual(total[:length], dataset) | |
| self.assertListEqual(total[length:], dataset[: (len(total) - length)]) | |
| # With a batch_size passed | |
| shard1 = SequentialDistributedSampler(dataset, num_replicas=2, rank=0, batch_size=batch_size) | |
| shard2 = SequentialDistributedSampler(dataset, num_replicas=2, rank=1, batch_size=batch_size) | |
| # Sample | |
| samples1 = list(shard1) | |
| samples2 = list(shard2) | |
| self.assertTrue(len(samples1) % batch_size == 0) | |
| self.assertTrue(len(samples2) % batch_size == 0) | |
| total = samples1 + samples2 | |
| self.assertListEqual(total[:length], dataset) | |
| self.assertListEqual(total[length:], dataset[: (len(total) - length)]) | |
| def check_iterable_dataset_shard(self, dataset, batch_size, drop_last, num_processes=2, epoch=0): | |
| # Set the seed for the base dataset to get the proper reference. | |
| dataset.generator.manual_seed(epoch) | |
| reference = list(dataset) | |
| shards = [ | |
| IterableDatasetShard( | |
| dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i | |
| ) | |
| for i in range(num_processes) | |
| ] | |
| for shard in shards: | |
| shard.set_epoch(epoch) | |
| shard_lists = [list(shard) for shard in shards] | |
| for shard in shard_lists: | |
| # All shards have a number of samples that is a round multiple of batch size | |
| self.assertTrue(len(shard) % batch_size == 0) | |
| # All shards have the same number of samples | |
| self.assertEqual(len(shard), len(shard_lists[0])) | |
| for shard in shards: | |
| # All shards know the total number of samples | |
| self.assertEqual(shard.num_examples, len(reference)) | |
| observed = [] | |
| for idx in range(0, len(shard_lists[0]), batch_size): | |
| for shard in shard_lists: | |
| observed += shard[idx : idx + batch_size] | |
| # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of | |
| # batch_size | |
| if not drop_last: | |
| while len(reference) < len(observed): | |
| reference += reference | |
| self.assertListEqual(observed, reference[: len(observed)]) | |
| # Check equivalence between IterableDataset and ShardSampler | |
| dataset.generator.manual_seed(epoch) | |
| reference = list(dataset) | |
| sampler_shards = [ | |
| ShardSampler( | |
| reference, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i | |
| ) | |
| for i in range(num_processes) | |
| ] | |
| for shard, sampler_shard in zip(shard_lists, sampler_shards): | |
| self.assertListEqual(shard, list(sampler_shard)) | |
| def test_iterable_dataset_shard(self): | |
| dataset = RandomIterableDataset() | |
| self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=2, epoch=0) | |
| self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=2, epoch=0) | |
| self.check_iterable_dataset_shard(dataset, 4, drop_last=True, num_processes=3, epoch=42) | |
| self.check_iterable_dataset_shard(dataset, 4, drop_last=False, num_processes=3, epoch=42) | |
| def test_iterable_dataset_shard_with_length(self): | |
| sampler_shards = [ | |
| IterableDatasetShard(list(range(100)), batch_size=4, drop_last=True, num_processes=2, process_index=i) | |
| for i in range(2) | |
| ] | |
| # Build expected shards: each process will have batches of size 4 until there is not enough elements to | |
| # form two full batches (so we stop at 96 = (100 // (4 * 2)) * 4) | |
| expected_shards = [[], []] | |
| current_shard = 0 | |
| for i in range(0, 96, 4): | |
| expected_shards[current_shard].extend(list(range(i, i + 4))) | |
| current_shard = 1 - current_shard | |
| self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards) | |
| self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards]) | |
| sampler_shards = [ | |
| IterableDatasetShard(list(range(100)), batch_size=4, drop_last=False, num_processes=2, process_index=i) | |
| for i in range(2) | |
| ] | |
| # When drop_last=False, we get two last full batches by looping back to the beginning. | |
| expected_shards[0].extend(list(range(96, 100))) | |
| expected_shards[1].extend(list(range(0, 4))) | |
| self.assertListEqual([list(shard) for shard in sampler_shards], expected_shards) | |
| self.assertListEqual([len(shard) for shard in sampler_shards], [len(shard) for shard in expected_shards]) | |
| def check_shard_sampler(self, dataset, batch_size, drop_last, num_processes=2): | |
| shards = [ | |
| ShardSampler( | |
| dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i | |
| ) | |
| for i in range(num_processes) | |
| ] | |
| shard_lists = [list(shard) for shard in shards] | |
| for shard in shard_lists: | |
| # All shards have a number of samples that is a round multiple of batch size | |
| self.assertTrue(len(shard) % batch_size == 0) | |
| # All shards have the same number of samples | |
| self.assertEqual(len(shard), len(shard_lists[0])) | |
| observed = [] | |
| for idx in range(0, len(shard_lists[0]), batch_size): | |
| for shard in shard_lists: | |
| observed += shard[idx : idx + batch_size] | |
| # If drop_last is False we loop through samples at the beginning to have a size that is a round multiple of | |
| # batch_size | |
| reference = copy.copy(dataset) | |
| if not drop_last: | |
| while len(reference) < len(observed): | |
| reference += reference | |
| self.assertListEqual(observed, reference[: len(observed)]) | |
| def test_shard_sampler(self): | |
| for n_elements in [64, 123]: | |
| dataset = list(range(n_elements)) | |
| self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=2) | |
| self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=2) | |
| self.check_shard_sampler(dataset, 4, drop_last=True, num_processes=3) | |
| self.check_shard_sampler(dataset, 4, drop_last=False, num_processes=3) | |
| def test_executable_batch_size(self): | |
| batch_sizes = [] | |
| def mock_training_loop_function(batch_size): | |
| nonlocal batch_sizes | |
| batch_sizes.append(batch_size) | |
| if batch_size > 16: | |
| raise RuntimeError("CUDA out of memory.") | |
| mock_training_loop_function() | |
| self.assertEqual(batch_sizes, [64, 32, 16]) | |
| def test_executable_batch_size_no_search(self): | |
| batch_sizes = [] | |
| def mock_training_loop_function(batch_size): | |
| nonlocal batch_sizes | |
| batch_sizes.append(batch_size) | |
| mock_training_loop_function() | |
| self.assertEqual(batch_sizes, [64]) | |
| def test_executable_batch_size_with_error(self): | |
| def mock_training_loop_function(batch_size): | |
| raise RuntimeError("CUDA out of memory.") | |
| with self.assertRaises(RuntimeError) as cm: | |
| mock_training_loop_function() | |
| self.assertEqual("CUDA out of memory", cm.args[0]) | |
| def test_pad_and_concatenate_with_1d(self): | |
| """Tests whether pad_and_concatenate works with scalars.""" | |
| array1 = 1.0 | |
| array2 = 2.0 | |
| result = numpy_pad_and_concatenate(array1, array2) | |
| self.assertTrue(np.array_equal(np.array([1.0, 2.0]), result)) | |
| tensor1 = torch.tensor(1.0) | |
| tensor2 = torch.tensor(2.0) | |
| result = torch_pad_and_concatenate(tensor1, tensor2) | |
| self.assertTrue(torch.equal(result, torch.Tensor([1.0, 2.0]))) | |
| def test_remove_columns_collator(self): | |
| class MockLogger: | |
| def __init__(self) -> None: | |
| self.called = 0 | |
| def info(self, msg): | |
| self.called += 1 | |
| self.last_msg = msg | |
| data_batch = [ | |
| {"col1": 1, "col2": 2, "col3": 3}, | |
| {"col1": 1, "col2": 2, "col3": 3}, | |
| ] | |
| logger = MockLogger() | |
| remove_columns_collator = RemoveColumnsCollator( | |
| default_data_collator, ["col1", "col2"], logger, "model", "training" | |
| ) | |
| self.assertNotIn("col3", remove_columns_collator(data_batch)) | |
| # check that the logging message is printed out only once | |
| remove_columns_collator(data_batch) | |
| remove_columns_collator(data_batch) | |
| self.assertEqual(logger.called, 1) | |
| self.assertIn("col3", logger.last_msg) | |