Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2022 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch LayoutLMv3 model. """ | |
| import copy | |
| import unittest | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_torch, slow, torch_device | |
| from transformers.utils import cached_property, is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
| MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
| MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
| MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
| LayoutLMv3Config, | |
| LayoutLMv3ForQuestionAnswering, | |
| LayoutLMv3ForSequenceClassification, | |
| LayoutLMv3ForTokenClassification, | |
| LayoutLMv3Model, | |
| ) | |
| from transformers.models.layoutlmv3.modeling_layoutlmv3 import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import LayoutLMv3ImageProcessor | |
| class LayoutLMv3ModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| num_channels=3, | |
| image_size=4, | |
| patch_size=2, | |
| text_seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=36, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| coordinate_size=6, | |
| shape_size=6, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| range_bbox=1000, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.num_channels = num_channels | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.text_seq_length = text_seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.coordinate_size = coordinate_size | |
| self.shape_size = shape_size | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| self.range_bbox = range_bbox | |
| # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) | |
| self.text_seq_length = text_seq_length | |
| self.image_seq_length = (image_size // patch_size) ** 2 + 1 | |
| self.seq_length = self.text_seq_length + self.image_seq_length | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size) | |
| bbox = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox) | |
| # Ensure that bbox is legal | |
| for i in range(bbox.shape[0]): | |
| for j in range(bbox.shape[1]): | |
| if bbox[i, j, 3] < bbox[i, j, 1]: | |
| t = bbox[i, j, 3] | |
| bbox[i, j, 3] = bbox[i, j, 1] | |
| bbox[i, j, 1] = t | |
| if bbox[i, j, 2] < bbox[i, j, 0]: | |
| t = bbox[i, j, 2] | |
| bbox[i, j, 2] = bbox[i, j, 0] | |
| bbox[i, j, 0] = t | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.text_seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels) | |
| config = LayoutLMv3Config( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| initializer_range=self.initializer_range, | |
| coordinate_size=self.coordinate_size, | |
| shape_size=self.shape_size, | |
| input_size=self.image_size, | |
| patch_size=self.patch_size, | |
| ) | |
| return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
| def create_and_check_model( | |
| self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| model = LayoutLMv3Model(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| # text + image | |
| result = model(input_ids, pixel_values=pixel_values) | |
| result = model( | |
| input_ids, bbox=bbox, pixel_values=pixel_values, attention_mask=input_mask, token_type_ids=token_type_ids | |
| ) | |
| result = model(input_ids, bbox=bbox, pixel_values=pixel_values, token_type_ids=token_type_ids) | |
| result = model(input_ids, bbox=bbox, pixel_values=pixel_values) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| # text only | |
| result = model(input_ids) | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) | |
| ) | |
| # image only | |
| result = model(pixel_values=pixel_values) | |
| self.parent.assertEqual( | |
| result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) | |
| ) | |
| def create_and_check_for_sequence_classification( | |
| self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LayoutLMv3ForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| pixel_values=pixel_values, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LayoutLMv3ForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| pixel_values=pixel_values, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels)) | |
| def create_and_check_for_question_answering( | |
| self, config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| model = LayoutLMv3ForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| pixel_values=pixel_values, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| bbox, | |
| pixel_values, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "bbox": bbox, | |
| "pixel_values": pixel_values, | |
| "token_type_ids": token_type_ids, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| class LayoutLMv3ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| test_pruning = False | |
| test_torchscript = False | |
| test_mismatched_shapes = False | |
| all_model_classes = ( | |
| ( | |
| LayoutLMv3Model, | |
| LayoutLMv3ForSequenceClassification, | |
| LayoutLMv3ForTokenClassification, | |
| LayoutLMv3ForQuestionAnswering, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| {"document-question-answering": LayoutLMv3ForQuestionAnswering, "feature-extraction": LayoutLMv3Model} | |
| if is_torch_available() | |
| else {} | |
| ) | |
| # TODO: Fix the failed tests | |
| def is_pipeline_test_to_skip( | |
| self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name | |
| ): | |
| # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual | |
| # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has | |
| # the sequence dimension of the text embedding only. | |
| # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) | |
| return True | |
| def setUp(self): | |
| self.model_tester = LayoutLMv3ModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=LayoutLMv3Config, hidden_size=37) | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = copy.deepcopy(inputs_dict) | |
| if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
| inputs_dict = { | |
| k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() | |
| if isinstance(v, torch.Tensor) and v.ndim > 1 | |
| else v | |
| for k, v in inputs_dict.items() | |
| } | |
| if return_labels: | |
| if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
| inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device) | |
| elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING): | |
| inputs_dict["start_positions"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| inputs_dict["end_positions"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class in [ | |
| *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), | |
| ]: | |
| inputs_dict["labels"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| elif model_class in [ | |
| *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), | |
| ]: | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.text_seq_length), | |
| dtype=torch.long, | |
| device=torch_device, | |
| ) | |
| return inputs_dict | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_various_embeddings(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| for type in ["absolute", "relative_key", "relative_key_query"]: | |
| config_and_inputs[0].position_embedding_type = type | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = LayoutLMv3Model.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
| return image | |
| class LayoutLMv3ModelIntegrationTest(unittest.TestCase): | |
| def default_image_processor(self): | |
| return LayoutLMv3ImageProcessor(apply_ocr=False) if is_vision_available() else None | |
| def test_inference_no_head(self): | |
| model = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base").to(torch_device) | |
| image_processor = self.default_image_processor | |
| image = prepare_img() | |
| pixel_values = image_processor(images=image, return_tensors="pt").pixel_values.to(torch_device) | |
| input_ids = torch.tensor([[1, 2]]) | |
| bbox = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) | |
| # forward pass | |
| outputs = model( | |
| input_ids=input_ids.to(torch_device), | |
| bbox=bbox.to(torch_device), | |
| pixel_values=pixel_values.to(torch_device), | |
| ) | |
| # verify the logits | |
| expected_shape = torch.Size((1, 199, 768)) | |
| self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] | |
| ).to(torch_device) | |
| self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |