Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch LayoutLMv2 model. """ | |
| import unittest | |
| from transformers.testing_utils import require_detectron2, require_torch, require_torch_multi_gpu, slow, torch_device | |
| from transformers.utils import is_detectron2_available, is_torch_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| LayoutLMv2Config, | |
| LayoutLMv2ForQuestionAnswering, | |
| LayoutLMv2ForSequenceClassification, | |
| LayoutLMv2ForTokenClassification, | |
| LayoutLMv2Model, | |
| ) | |
| from transformers.models.layoutlmv2.modeling_layoutlmv2 import LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_detectron2_available(): | |
| from detectron2.structures.image_list import ImageList | |
| class LayoutLMv2ModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=2, | |
| num_channels=3, | |
| image_size=4, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=36, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| image_feature_pool_shape=[7, 7, 256], | |
| coordinate_size=6, | |
| shape_size=6, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| range_bbox=1000, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.num_channels = num_channels | |
| self.image_size = image_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.image_feature_pool_shape = image_feature_pool_shape | |
| self.coordinate_size = coordinate_size | |
| self.shape_size = shape_size | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| self.range_bbox = range_bbox | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| bbox = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) | |
| # Ensure that bbox is legal | |
| for i in range(bbox.shape[0]): | |
| for j in range(bbox.shape[1]): | |
| if bbox[i, j, 3] < bbox[i, j, 1]: | |
| t = bbox[i, j, 3] | |
| bbox[i, j, 3] = bbox[i, j, 1] | |
| bbox[i, j, 1] = t | |
| if bbox[i, j, 2] < bbox[i, j, 0]: | |
| t = bbox[i, j, 2] | |
| bbox[i, j, 2] = bbox[i, j, 0] | |
| bbox[i, j, 0] = t | |
| image = ImageList( | |
| torch.zeros(self.batch_size, self.num_channels, self.image_size, self.image_size, device=torch_device), | |
| self.image_size, | |
| ) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| config = LayoutLMv2Config( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| image_feature_pool_shape=self.image_feature_pool_shape, | |
| coordinate_size=self.coordinate_size, | |
| shape_size=self.shape_size, | |
| ) | |
| # use smaller resnet backbone to make tests faster | |
| config.detectron2_config_args["MODEL.RESNETS.DEPTH"] = 18 | |
| config.detectron2_config_args["MODEL.RESNETS.RES2_OUT_CHANNELS"] = 64 | |
| config.detectron2_config_args["MODEL.RESNETS.NUM_GROUPS"] = 1 | |
| return config, input_ids, bbox, image, token_type_ids, input_mask, sequence_labels, token_labels | |
| def create_and_check_model( | |
| self, config, input_ids, bbox, image, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| model = LayoutLMv2Model(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, bbox=bbox, image=image, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, bbox=bbox, image=image, token_type_ids=token_type_ids) | |
| result = model(input_ids, bbox=bbox, image=image) | |
| # LayoutLMv2 has a different expected sequence length, namely also visual tokens are added | |
| expected_seq_len = self.seq_length + self.image_feature_pool_shape[0] * self.image_feature_pool_shape[1] | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_for_sequence_classification( | |
| self, config, input_ids, bbox, image, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LayoutLMv2ForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| image=image, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, bbox, image, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = LayoutLMv2ForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| image=image, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_question_answering( | |
| self, config, input_ids, bbox, image, token_type_ids, input_mask, sequence_labels, token_labels | |
| ): | |
| model = LayoutLMv2ForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| bbox=bbox, | |
| image=image, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| bbox, | |
| image, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| ) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "bbox": bbox, | |
| "image": image, | |
| "token_type_ids": token_type_ids, | |
| "attention_mask": input_mask, | |
| } | |
| return config, inputs_dict | |
| class LayoutLMv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| test_pruning = False | |
| test_torchscript = True | |
| test_mismatched_shapes = False | |
| all_model_classes = ( | |
| ( | |
| LayoutLMv2Model, | |
| LayoutLMv2ForSequenceClassification, | |
| LayoutLMv2ForTokenClassification, | |
| LayoutLMv2ForQuestionAnswering, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| pipeline_model_mapping = ( | |
| {"document-question-answering": LayoutLMv2ForQuestionAnswering, "feature-extraction": LayoutLMv2Model} | |
| if is_torch_available() | |
| else {} | |
| ) | |
| def setUp(self): | |
| self.model_tester = LayoutLMv2ModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=LayoutLMv2Config, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_multi_gpu_data_parallel_forward(self): | |
| pass | |
| def test_model_various_embeddings(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| for type in ["absolute", "relative_key", "relative_key_query"]: | |
| config_and_inputs[0].position_embedding_type = type | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_attention_outputs(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| config.return_dict = True | |
| # LayoutLMv2 has a different expected sequence length | |
| expected_seq_len = ( | |
| self.model_tester.seq_length | |
| + self.model_tester.image_feature_pool_shape[0] * self.model_tester.image_feature_pool_shape[1] | |
| ) | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = False | |
| config.return_dict = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| # check that output_attentions also work using config | |
| del inputs_dict["output_attentions"] | |
| config.output_attentions = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| attentions = outputs.attentions | |
| self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, expected_seq_len, expected_seq_len], | |
| ) | |
| out_len = len(outputs) | |
| # Check attention is always last and order is fine | |
| inputs_dict["output_attentions"] = True | |
| inputs_dict["output_hidden_states"] = True | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| if hasattr(self.model_tester, "num_hidden_states_types"): | |
| added_hidden_states = self.model_tester.num_hidden_states_types | |
| else: | |
| added_hidden_states = 1 | |
| self.assertEqual(out_len + added_hidden_states, len(outputs)) | |
| self_attentions = outputs.attentions | |
| self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) | |
| self.assertListEqual( | |
| list(self_attentions[0].shape[-3:]), | |
| [self.model_tester.num_attention_heads, expected_seq_len, expected_seq_len], | |
| ) | |
| def test_hidden_states_output(self): | |
| def check_hidden_states_output(inputs_dict, config, model_class): | |
| model = model_class(config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
| hidden_states = outputs.hidden_states | |
| expected_num_layers = getattr( | |
| self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
| ) | |
| self.assertEqual(len(hidden_states), expected_num_layers) | |
| # LayoutLMv2 has a different expected sequence length | |
| expected_seq_len = ( | |
| self.model_tester.seq_length | |
| + self.model_tester.image_feature_pool_shape[0] * self.model_tester.image_feature_pool_shape[1] | |
| ) | |
| self.assertListEqual( | |
| list(hidden_states[0].shape[-2:]), | |
| [expected_seq_len, self.model_tester.hidden_size], | |
| ) | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| inputs_dict["output_hidden_states"] = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| # check that output_hidden_states also work using config | |
| del inputs_dict["output_hidden_states"] | |
| config.output_hidden_states = True | |
| check_hidden_states_output(inputs_dict, config, model_class) | |
| def test_model_is_small(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = LayoutLMv2Model.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if "backbone" in name or "visual_segment_embedding" in name: | |
| continue | |
| if param.requires_grad: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def prepare_layoutlmv2_batch_inputs(): | |
| # Here we prepare a batch of 2 sequences to test a LayoutLMv2 forward pass on: | |
| # fmt: off | |
| input_ids = torch.tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]]) # noqa: E231 | |
| bbox = torch.tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]]) # noqa: E231 | |
| image = ImageList(torch.randn((2,3,224,224)), image_sizes=[(224,224), (224,224)]) # noqa: E231 | |
| attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],]) # noqa: E231 | |
| token_type_ids = torch.tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]) # noqa: E231 | |
| # fmt: on | |
| return input_ids, bbox, image, attention_mask, token_type_ids | |
| class LayoutLMv2ModelIntegrationTest(unittest.TestCase): | |
| def test_inference_no_head(self): | |
| model = LayoutLMv2Model.from_pretrained("microsoft/layoutlmv2-base-uncased").to(torch_device) | |
| ( | |
| input_ids, | |
| bbox, | |
| image, | |
| attention_mask, | |
| token_type_ids, | |
| ) = prepare_layoutlmv2_batch_inputs() | |
| # forward pass | |
| outputs = model( | |
| input_ids=input_ids.to(torch_device), | |
| bbox=bbox.to(torch_device), | |
| image=image.to(torch_device), | |
| attention_mask=attention_mask.to(torch_device), | |
| token_type_ids=token_type_ids.to(torch_device), | |
| ) | |
| # verify the sequence output | |
| expected_shape = torch.Size( | |
| ( | |
| 2, | |
| input_ids.shape[1] | |
| + model.config.image_feature_pool_shape[0] * model.config.image_feature_pool_shape[1], | |
| model.config.hidden_size, | |
| ) | |
| ) | |
| self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[-0.1087, 0.0727, -0.3075], [0.0799, -0.0427, -0.0751], [-0.0367, 0.0480, -0.1358]], device=torch_device | |
| ) | |
| self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-3)) | |
| # verify the pooled output | |
| expected_shape = torch.Size((2, model.config.hidden_size)) | |
| self.assertEqual(outputs.pooler_output.shape, expected_shape) | |