Spaces:
Paused
Paused
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch CLIP model. """ | |
| import inspect | |
| import os | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import requests | |
| import transformers | |
| from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig | |
| from transformers.testing_utils import ( | |
| is_flax_available, | |
| is_pt_flax_cross_test, | |
| require_torch, | |
| require_vision, | |
| slow, | |
| torch_device, | |
| ) | |
| from transformers.utils import is_torch_available, is_vision_available | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ( | |
| ModelTesterMixin, | |
| _config_zero_init, | |
| floats_tensor, | |
| ids_tensor, | |
| random_attention_mask, | |
| ) | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from torch import nn | |
| from transformers import ( | |
| CLIPModel, | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPVisionModel, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| from transformers.models.clip.modeling_clip import CLIP_PRETRAINED_MODEL_ARCHIVE_LIST | |
| if is_vision_available(): | |
| from PIL import Image | |
| from transformers import CLIPProcessor | |
| if is_flax_available(): | |
| import jax.numpy as jnp | |
| from transformers.modeling_flax_pytorch_utils import ( | |
| convert_pytorch_state_dict_to_flax, | |
| load_flax_weights_in_pytorch_model, | |
| ) | |
| class CLIPVisionModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| image_size=30, | |
| patch_size=2, | |
| num_channels=3, | |
| is_training=True, | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.image_size = image_size | |
| self.patch_size = patch_size | |
| self.num_channels = num_channels | |
| self.is_training = is_training | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) | |
| num_patches = (image_size // patch_size) ** 2 | |
| self.seq_length = num_patches + 1 | |
| def prepare_config_and_inputs(self): | |
| pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
| config = self.get_config() | |
| return config, pixel_values | |
| def get_config(self): | |
| return CLIPVisionConfig( | |
| image_size=self.image_size, | |
| patch_size=self.patch_size, | |
| num_channels=self.num_channels, | |
| hidden_size=self.hidden_size, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, pixel_values): | |
| model = CLIPVisionModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(pixel_values) | |
| # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
| image_size = (self.image_size, self.image_size) | |
| patch_size = (self.patch_size, self.patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_with_projection(self, config, pixel_values): | |
| model = CLIPVisionModelWithProjection(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(pixel_values) | |
| # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) | |
| image_size = (self.image_size, self.image_size) | |
| patch_size = (self.patch_size, self.patch_size) | |
| num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) | |
| self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, pixel_values = config_and_inputs | |
| inputs_dict = {"pixel_values": pixel_values} | |
| return config, inputs_dict | |
| class CLIPVisionModelTest(ModelTesterMixin, unittest.TestCase): | |
| """ | |
| Here we also overwrite some of the tests of test_modeling_common.py, as CLIP does not use input_ids, inputs_embeds, | |
| attention_mask and seq_length. | |
| """ | |
| all_model_classes = (CLIPVisionModel, CLIPVisionModelWithProjection) if is_torch_available() else () | |
| fx_compatible = True | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_head_masking = False | |
| def setUp(self): | |
| self.model_tester = CLIPVisionModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=CLIPVisionConfig, has_text_modality=False, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) | |
| x = model.get_output_embeddings() | |
| self.assertTrue(x is None or isinstance(x, nn.Linear)) | |
| def test_forward_signature(self): | |
| config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| signature = inspect.signature(model.forward) | |
| # signature.parameters is an OrderedDict => so arg_names order is deterministic | |
| arg_names = [*signature.parameters.keys()] | |
| expected_arg_names = ["pixel_values"] | |
| self.assertListEqual(arg_names[:1], expected_arg_names) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_with_projection(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = CLIPVisionModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_model_with_projection_from_pretrained(self): | |
| for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = CLIPVisionModelWithProjection.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| self.assertTrue(hasattr(model, "visual_projection")) | |
| class CLIPTextModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=12, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| dropout=0.1, | |
| attention_dropout=0.1, | |
| max_position_embeddings=512, | |
| initializer_range=0.02, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.dropout = dropout | |
| self.attention_dropout = attention_dropout | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| if input_mask is not None: | |
| batch_size, seq_length = input_mask.shape | |
| rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) | |
| for batch_idx, start_index in enumerate(rnd_start_indices): | |
| input_mask[batch_idx, :start_index] = 1 | |
| input_mask[batch_idx, start_index:] = 0 | |
| config = self.get_config() | |
| return config, input_ids, input_mask | |
| def get_config(self): | |
| return CLIPTextConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| projection_dim=self.projection_dim, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| dropout=self.dropout, | |
| attention_dropout=self.attention_dropout, | |
| max_position_embeddings=self.max_position_embeddings, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def create_and_check_model(self, config, input_ids, input_mask): | |
| model = CLIPTextModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_with_projection(self, config, input_ids, input_mask): | |
| model = CLIPTextModelWithProjection(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, attention_mask=input_mask) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, input_mask = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class CLIPTextModelTest(ModelTesterMixin, unittest.TestCase): | |
| all_model_classes = (CLIPTextModel, CLIPTextModelWithProjection) if is_torch_available() else () | |
| fx_compatible = True | |
| test_pruning = False | |
| test_head_masking = False | |
| model_split_percents = [0.5, 0.8, 0.9] | |
| def setUp(self): | |
| self.model_tester = CLIPTextModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=CLIPTextConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_with_projection(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model_with_projection(*config_and_inputs) | |
| def test_training(self): | |
| pass | |
| def test_training_gradient_checkpointing(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_save_load_fast_init_from_base(self): | |
| pass | |
| def test_save_load_fast_init_to_base(self): | |
| pass | |
| def test_model_from_pretrained(self): | |
| for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = CLIPTextModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_model_with_projection_from_pretrained(self): | |
| for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = CLIPTextModelWithProjection.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| self.assertTrue(hasattr(model, "text_projection")) | |
| class CLIPModelTester: | |
| def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): | |
| if text_kwargs is None: | |
| text_kwargs = {} | |
| if vision_kwargs is None: | |
| vision_kwargs = {} | |
| self.parent = parent | |
| self.text_model_tester = CLIPTextModelTester(parent, **text_kwargs) | |
| self.vision_model_tester = CLIPVisionModelTester(parent, **vision_kwargs) | |
| self.is_training = is_training | |
| def prepare_config_and_inputs(self): | |
| text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() | |
| vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs() | |
| config = self.get_config() | |
| return config, input_ids, attention_mask, pixel_values | |
| def get_config(self): | |
| return CLIPConfig.from_text_vision_configs( | |
| self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64 | |
| ) | |
| def create_and_check_model(self, config, input_ids, attention_mask, pixel_values): | |
| model = CLIPModel(config).to(torch_device).eval() | |
| with torch.no_grad(): | |
| result = model(input_ids, pixel_values, attention_mask) | |
| self.parent.assertEqual( | |
| result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size) | |
| ) | |
| self.parent.assertEqual( | |
| result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size) | |
| ) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| config, input_ids, attention_mask, pixel_values = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| "pixel_values": pixel_values, | |
| "return_loss": True, | |
| } | |
| return config, inputs_dict | |
| class CLIPModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (CLIPModel,) if is_torch_available() else () | |
| pipeline_model_mapping = {"feature-extraction": CLIPModel} if is_torch_available() else {} | |
| fx_compatible = True | |
| test_head_masking = False | |
| test_pruning = False | |
| test_resize_embeddings = False | |
| test_attention_outputs = False | |
| def setUp(self): | |
| self.model_tester = CLIPModelTester(self) | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_hidden_states_output(self): | |
| pass | |
| def test_inputs_embeds(self): | |
| pass | |
| def test_retain_grad_hidden_states_attentions(self): | |
| pass | |
| def test_model_common_attributes(self): | |
| pass | |
| # override as the `logit_scale` parameter initilization is different for CLIP | |
| def test_initialization(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| configs_no_init = _config_zero_init(config) | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| for name, param in model.named_parameters(): | |
| if param.requires_grad: | |
| # check if `logit_scale` is initilized as per the original implementation | |
| if name == "logit_scale": | |
| self.assertAlmostEqual( | |
| param.data.item(), | |
| np.log(1 / 0.07), | |
| delta=1e-3, | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| else: | |
| self.assertIn( | |
| ((param.data.mean() * 1e9).round() / 1e9).item(), | |
| [0.0, 1.0], | |
| msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
| ) | |
| def _create_and_check_torchscript(self, config, inputs_dict): | |
| if not self.test_torchscript: | |
| return | |
| configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
| configs_no_init.torchscript = True | |
| configs_no_init.return_dict = False | |
| for model_class in self.all_model_classes: | |
| model = model_class(config=configs_no_init) | |
| model.to(torch_device) | |
| model.eval() | |
| try: | |
| input_ids = inputs_dict["input_ids"] | |
| pixel_values = inputs_dict["pixel_values"] # CLIP needs pixel_values | |
| traced_model = torch.jit.trace(model, (input_ids, pixel_values)) | |
| except RuntimeError: | |
| self.fail("Couldn't trace module.") | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") | |
| try: | |
| torch.jit.save(traced_model, pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't save module.") | |
| try: | |
| loaded_model = torch.jit.load(pt_file_name) | |
| except Exception: | |
| self.fail("Couldn't load module.") | |
| model.to(torch_device) | |
| model.eval() | |
| loaded_model.to(torch_device) | |
| loaded_model.eval() | |
| model_state_dict = model.state_dict() | |
| loaded_model_state_dict = loaded_model.state_dict() | |
| non_persistent_buffers = {} | |
| for key in loaded_model_state_dict.keys(): | |
| if key not in model_state_dict.keys(): | |
| non_persistent_buffers[key] = loaded_model_state_dict[key] | |
| loaded_model_state_dict = { | |
| key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers | |
| } | |
| self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) | |
| model_buffers = list(model.buffers()) | |
| for non_persistent_buffer in non_persistent_buffers.values(): | |
| found_buffer = False | |
| for i, model_buffer in enumerate(model_buffers): | |
| if torch.equal(non_persistent_buffer, model_buffer): | |
| found_buffer = True | |
| break | |
| self.assertTrue(found_buffer) | |
| model_buffers.pop(i) | |
| models_equal = True | |
| for layer_name, p1 in model_state_dict.items(): | |
| p2 = loaded_model_state_dict[layer_name] | |
| if p1.data.ne(p2.data).sum() > 0: | |
| models_equal = False | |
| self.assertTrue(models_equal) | |
| def test_load_vision_text_config(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| # Save CLIPConfig and check if we can load CLIPVisionConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| vision_config = CLIPVisionConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) | |
| # Save CLIPConfig and check if we can load CLIPTextConfig from it | |
| with tempfile.TemporaryDirectory() as tmp_dir_name: | |
| config.save_pretrained(tmp_dir_name) | |
| text_config = CLIPTextConfig.from_pretrained(tmp_dir_name) | |
| self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) | |
| # overwrite from common since FlaxCLIPModel returns nested output | |
| # which is not supported in the common test | |
| def test_equivalence_pt_to_flax(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| # load PyTorch class | |
| pt_model = model_class(config).eval() | |
| # Flax models don't use the `use_cache` option and cache is not returned as a default. | |
| # So we disable `use_cache` here for PyTorch model. | |
| pt_model.config.use_cache = False | |
| fx_model_class_name = "Flax" + model_class.__name__ | |
| if not hasattr(transformers, fx_model_class_name): | |
| return | |
| fx_model_class = getattr(transformers, fx_model_class_name) | |
| # load Flax class | |
| fx_model = fx_model_class(config, dtype=jnp.float32) | |
| # make sure only flax inputs are forward that actually exist in function args | |
| fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
| # prepare inputs | |
| pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| # remove function args that don't exist in Flax | |
| pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
| fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model) | |
| fx_model.params = fx_state | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs).to_tuple() | |
| # convert inputs to Flax | |
| fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
| fx_outputs = fx_model(**fx_inputs).to_tuple() | |
| self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| pt_model.save_pretrained(tmpdirname) | |
| fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True) | |
| fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple() | |
| self.assertEqual( | |
| len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch" | |
| ) | |
| for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2) | |
| # overwrite from common since FlaxCLIPModel returns nested output | |
| # which is not supported in the common test | |
| def test_equivalence_flax_to_pt(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| with self.subTest(model_class.__name__): | |
| # load corresponding PyTorch class | |
| pt_model = model_class(config).eval() | |
| # So we disable `use_cache` here for PyTorch model. | |
| pt_model.config.use_cache = False | |
| fx_model_class_name = "Flax" + model_class.__name__ | |
| if not hasattr(transformers, fx_model_class_name): | |
| # no flax model exists for this class | |
| return | |
| fx_model_class = getattr(transformers, fx_model_class_name) | |
| # load Flax class | |
| fx_model = fx_model_class(config, dtype=jnp.float32) | |
| # make sure only flax inputs are forward that actually exist in function args | |
| fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys() | |
| pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params) | |
| # make sure weights are tied in PyTorch | |
| pt_model.tie_weights() | |
| # prepare inputs | |
| pt_inputs = self._prepare_for_class(inputs_dict, model_class) | |
| # remove function args that don't exist in Flax | |
| pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys} | |
| with torch.no_grad(): | |
| pt_outputs = pt_model(**pt_inputs).to_tuple() | |
| fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)} | |
| fx_outputs = fx_model(**fx_inputs).to_tuple() | |
| self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch") | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| fx_model.save_pretrained(tmpdirname) | |
| pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True) | |
| with torch.no_grad(): | |
| pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple() | |
| self.assertEqual( | |
| len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch" | |
| ) | |
| for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs_loaded[:4]): | |
| self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2) | |
| def test_model_from_pretrained(self): | |
| for model_name in CLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = CLIPModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| # We will verify our results on an image of cute cats | |
| def prepare_img(): | |
| url = "http://images.cocodataset.org/val2017/000000039769.jpg" | |
| im = Image.open(requests.get(url, stream=True).raw) | |
| return im | |
| class CLIPModelIntegrationTest(unittest.TestCase): | |
| def test_inference(self): | |
| model_name = "openai/clip-vit-base-patch32" | |
| model = CLIPModel.from_pretrained(model_name).to(torch_device) | |
| processor = CLIPProcessor.from_pretrained(model_name) | |
| image = prepare_img() | |
| inputs = processor( | |
| text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt" | |
| ).to(torch_device) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # verify the logits | |
| self.assertEqual( | |
| outputs.logits_per_image.shape, | |
| torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), | |
| ) | |
| self.assertEqual( | |
| outputs.logits_per_text.shape, | |
| torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), | |
| ) | |
| expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device) | |
| self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3)) | |