Spaces:
Paused
Paused
| from dataclasses import dataclass, field | |
| from typing import List | |
| from TTS.tts.configs.shared_configs import BaseTTSConfig | |
| from TTS.tts.models.vits import VitsArgs, VitsAudioConfig | |
| class VitsConfig(BaseTTSConfig): | |
| """Defines parameters for VITS End2End TTS model. | |
| Args: | |
| model (str): | |
| Model name. Do not change unless you know what you are doing. | |
| model_args (VitsArgs): | |
| Model architecture arguments. Defaults to `VitsArgs()`. | |
| audio (VitsAudioConfig): | |
| Audio processing configuration. Defaults to `VitsAudioConfig()`. | |
| grad_clip (List): | |
| Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. | |
| lr_gen (float): | |
| Initial learning rate for the generator. Defaults to 0.0002. | |
| lr_disc (float): | |
| Initial learning rate for the discriminator. Defaults to 0.0002. | |
| lr_scheduler_gen (str): | |
| Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to | |
| `ExponentialLR`. | |
| lr_scheduler_gen_params (dict): | |
| Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | |
| lr_scheduler_disc (str): | |
| Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to | |
| `ExponentialLR`. | |
| lr_scheduler_disc_params (dict): | |
| Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. | |
| scheduler_after_epoch (bool): | |
| If true, step the schedulers after each epoch else after each step. Defaults to `False`. | |
| optimizer (str): | |
| Name of the optimizer to use with both the generator and the discriminator networks. One of the | |
| `torch.optim.*`. Defaults to `AdamW`. | |
| kl_loss_alpha (float): | |
| Loss weight for KL loss. Defaults to 1.0. | |
| disc_loss_alpha (float): | |
| Loss weight for the discriminator loss. Defaults to 1.0. | |
| gen_loss_alpha (float): | |
| Loss weight for the generator loss. Defaults to 1.0. | |
| feat_loss_alpha (float): | |
| Loss weight for the feature matching loss. Defaults to 1.0. | |
| mel_loss_alpha (float): | |
| Loss weight for the mel loss. Defaults to 45.0. | |
| return_wav (bool): | |
| If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. | |
| compute_linear_spec (bool): | |
| If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. | |
| use_weighted_sampler (bool): | |
| If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. | |
| weighted_sampler_attrs (dict): | |
| Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities | |
| by overweighting `root_path` by 2.0. Defaults to `{}`. | |
| weighted_sampler_multipliers (dict): | |
| Weight each unique value of a key returned by the formatter for weighted sampling. | |
| For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. | |
| It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. | |
| r (int): | |
| Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. | |
| add_blank (bool): | |
| If true, a blank token is added in between every character. Defaults to `True`. | |
| test_sentences (List[List]): | |
| List of sentences with speaker and language information to be used for testing. | |
| language_ids_file (str): | |
| Path to the language ids file. | |
| use_language_embedding (bool): | |
| If true, language embedding is used. Defaults to `False`. | |
| Note: | |
| Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. | |
| Example: | |
| >>> from TTS.tts.configs.vits_config import VitsConfig | |
| >>> config = VitsConfig() | |
| """ | |
| model: str = "vits" | |
| # model specific params | |
| model_args: VitsArgs = field(default_factory=VitsArgs) | |
| audio: VitsAudioConfig = field(default_factory=VitsAudioConfig) | |
| # optimizer | |
| grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) | |
| lr_gen: float = 0.0002 | |
| lr_disc: float = 0.0002 | |
| lr_scheduler_gen: str = "ExponentialLR" | |
| lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
| lr_scheduler_disc: str = "ExponentialLR" | |
| lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) | |
| scheduler_after_epoch: bool = True | |
| optimizer: str = "AdamW" | |
| optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) | |
| # loss params | |
| kl_loss_alpha: float = 1.0 | |
| disc_loss_alpha: float = 1.0 | |
| gen_loss_alpha: float = 1.0 | |
| feat_loss_alpha: float = 1.0 | |
| mel_loss_alpha: float = 45.0 | |
| dur_loss_alpha: float = 1.0 | |
| speaker_encoder_loss_alpha: float = 1.0 | |
| # data loader params | |
| return_wav: bool = True | |
| compute_linear_spec: bool = True | |
| # sampler params | |
| use_weighted_sampler: bool = False # TODO: move it to the base config | |
| weighted_sampler_attrs: dict = field(default_factory=lambda: {}) | |
| weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) | |
| # overrides | |
| r: int = 1 # DO NOT CHANGE | |
| add_blank: bool = True | |
| # testing | |
| test_sentences: List[List] = field( | |
| default_factory=lambda: [ | |
| ["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], | |
| ["Be a voice, not an echo."], | |
| ["I'm sorry Dave. I'm afraid I can't do that."], | |
| ["This cake is great. It's so delicious and moist."], | |
| ["Prior to November 22, 1963."], | |
| ] | |
| ) | |
| # multi-speaker settings | |
| # use speaker embedding layer | |
| num_speakers: int = 0 | |
| use_speaker_embedding: bool = False | |
| speakers_file: str = None | |
| speaker_embedding_channels: int = 256 | |
| language_ids_file: str = None | |
| use_language_embedding: bool = False | |
| # use d-vectors | |
| use_d_vector_file: bool = False | |
| d_vector_file: List[str] = None | |
| d_vector_dim: int = None | |
| def __post_init__(self): | |
| for key, val in self.model_args.items(): | |
| if hasattr(self, key): | |
| self[key] = val | |