Spaces:
Paused
Paused
| import copy | |
| import os | |
| import unittest | |
| import torch | |
| from torch import nn, optim | |
| from tests import get_tests_input_path | |
| from TTS.tts.configs.shared_configs import CapacitronVAEConfig, GSTConfig | |
| from TTS.tts.configs.tacotron_config import TacotronConfig | |
| from TTS.tts.layers.losses import L1LossMasked | |
| from TTS.tts.models.tacotron import Tacotron | |
| from TTS.utils.audio import AudioProcessor | |
| # pylint: disable=unused-variable | |
| torch.manual_seed(1) | |
| use_cuda = torch.cuda.is_available() | |
| device = torch.device("cuda" if use_cuda else "cpu") | |
| config_global = TacotronConfig(num_chars=32, num_speakers=5, out_channels=513, decoder_output_dim=80) | |
| ap = AudioProcessor(**config_global.audio) | |
| WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") | |
| def count_parameters(model): | |
| r"""Count number of trainable parameters in a network""" | |
| return sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| class TacotronTrainTest(unittest.TestCase): | |
| def test_train_step(): | |
| config = config_global.copy() | |
| config.use_speaker_embedding = False | |
| config.num_speakers = 1 | |
| input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
| input_lengths = torch.randint(100, 129, (8,)).long().to(device) | |
| input_lengths[-1] = 128 | |
| mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
| linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) | |
| mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
| mel_lengths[-1] = mel_spec.size(1) | |
| stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
| for idx in mel_lengths: | |
| stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
| stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
| stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| criterion = L1LossMasked(seq_len_norm=False).to(device) | |
| criterion_st = nn.BCEWithLogitsLoss().to(device) | |
| model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor | |
| model.train() | |
| print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
| for _ in range(5): | |
| outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths) | |
| optimizer.zero_grad() | |
| loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
| stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
| loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss | |
| loss.backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| # if count not in [145, 59]: | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |
| class MultiSpeakeTacotronTrainTest(unittest.TestCase): | |
| def test_train_step(): | |
| config = config_global.copy() | |
| config.use_speaker_embedding = True | |
| config.num_speakers = 5 | |
| input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
| input_lengths = torch.randint(100, 129, (8,)).long().to(device) | |
| input_lengths[-1] = 128 | |
| mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
| linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) | |
| mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
| mel_lengths[-1] = mel_spec.size(1) | |
| stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
| speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
| for idx in mel_lengths: | |
| stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
| stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
| stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| criterion = L1LossMasked(seq_len_norm=False).to(device) | |
| criterion_st = nn.BCEWithLogitsLoss().to(device) | |
| config.d_vector_dim = 55 | |
| model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor | |
| model.train() | |
| print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
| for _ in range(5): | |
| outputs = model.forward( | |
| input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
| ) | |
| optimizer.zero_grad() | |
| loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
| stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
| loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss | |
| loss.backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| # if count not in [145, 59]: | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |
| class TacotronGSTTrainTest(unittest.TestCase): | |
| def test_train_step(): | |
| config = config_global.copy() | |
| config.use_speaker_embedding = True | |
| config.num_speakers = 10 | |
| config.use_gst = True | |
| config.gst = GSTConfig() | |
| # with random gst mel style | |
| input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
| input_lengths = torch.randint(100, 129, (8,)).long().to(device) | |
| input_lengths[-1] = 128 | |
| mel_spec = torch.rand(8, 120, config.audio["num_mels"]).to(device) | |
| linear_spec = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) | |
| mel_lengths = torch.randint(20, 120, (8,)).long().to(device) | |
| mel_lengths[-1] = 120 | |
| stop_targets = torch.zeros(8, 120, 1).float().to(device) | |
| speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
| for idx in mel_lengths: | |
| stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
| stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
| stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| criterion = L1LossMasked(seq_len_norm=False).to(device) | |
| criterion_st = nn.BCEWithLogitsLoss().to(device) | |
| config.use_gst = True | |
| config.gst = GSTConfig() | |
| model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor | |
| model.train() | |
| # print(model) | |
| print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
| for _ in range(10): | |
| outputs = model.forward( | |
| input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
| ) | |
| optimizer.zero_grad() | |
| loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
| stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
| loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss | |
| loss.backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |
| # with file gst style | |
| mel_spec = ( | |
| torch.FloatTensor(ap.melspectrogram(ap.load_wav(WAV_FILE)))[:, :120].unsqueeze(0).transpose(1, 2).to(device) | |
| ) | |
| mel_spec = mel_spec.repeat(8, 1, 1) | |
| input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
| input_lengths = torch.randint(100, 129, (8,)).long().to(device) | |
| input_lengths[-1] = 128 | |
| linear_spec = torch.rand(8, mel_spec.size(1), config.audio["fft_size"] // 2 + 1).to(device) | |
| mel_lengths = torch.randint(20, mel_spec.size(1), (8,)).long().to(device) | |
| mel_lengths[-1] = mel_spec.size(1) | |
| stop_targets = torch.zeros(8, mel_spec.size(1), 1).float().to(device) | |
| speaker_ids = torch.randint(0, 5, (8,)).long().to(device) | |
| for idx in mel_lengths: | |
| stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
| stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
| stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| criterion = L1LossMasked(seq_len_norm=False).to(device) | |
| criterion_st = nn.BCEWithLogitsLoss().to(device) | |
| model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor | |
| model.train() | |
| # print(model) | |
| print(" > Num parameters for Tacotron GST model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
| for _ in range(10): | |
| outputs = model.forward( | |
| input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"speaker_ids": speaker_ids} | |
| ) | |
| optimizer.zero_grad() | |
| loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
| stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
| loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss | |
| loss.backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |
| class TacotronCapacitronTrainTest(unittest.TestCase): | |
| def test_train_step(): | |
| config = TacotronConfig( | |
| num_chars=32, | |
| num_speakers=10, | |
| use_speaker_embedding=True, | |
| out_channels=513, | |
| decoder_output_dim=80, | |
| use_capacitron_vae=True, | |
| capacitron_vae=CapacitronVAEConfig(), | |
| optimizer="CapacitronOptimizer", | |
| optimizer_params={ | |
| "RAdam": {"betas": [0.9, 0.998], "weight_decay": 1e-6}, | |
| "SGD": {"lr": 1e-5, "momentum": 0.9}, | |
| }, | |
| ) | |
| batch = dict({}) | |
| batch["text_input"] = torch.randint(0, 24, (8, 128)).long().to(device) | |
| batch["text_lengths"] = torch.randint(100, 129, (8,)).long().to(device) | |
| batch["text_lengths"] = torch.sort(batch["text_lengths"], descending=True)[0] | |
| batch["text_lengths"][0] = 128 | |
| batch["linear_input"] = torch.rand(8, 120, config.audio["fft_size"] // 2 + 1).to(device) | |
| batch["mel_input"] = torch.rand(8, 120, config.audio["num_mels"]).to(device) | |
| batch["mel_lengths"] = torch.randint(20, 120, (8,)).long().to(device) | |
| batch["mel_lengths"] = torch.sort(batch["mel_lengths"], descending=True)[0] | |
| batch["mel_lengths"][0] = 120 | |
| batch["stop_targets"] = torch.zeros(8, 120, 1).float().to(device) | |
| batch["stop_target_lengths"] = torch.randint(0, 120, (8,)).to(device) | |
| batch["speaker_ids"] = torch.randint(0, 5, (8,)).long().to(device) | |
| batch["d_vectors"] = None | |
| for idx in batch["mel_lengths"]: | |
| batch["stop_targets"][:, int(idx.item()) :, 0] = 1.0 | |
| batch["stop_targets"] = batch["stop_targets"].view( | |
| batch["text_input"].shape[0], batch["stop_targets"].size(1) // config.r, -1 | |
| ) | |
| batch["stop_targets"] = (batch["stop_targets"].sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| model = Tacotron(config).to(device) | |
| criterion = model.get_criterion() | |
| optimizer = model.get_optimizer() | |
| model.train() | |
| print(" > Num parameters for Tacotron with Capacitron VAE model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| for _ in range(10): | |
| _, loss_dict = model.train_step(batch, criterion) | |
| optimizer.zero_grad() | |
| loss_dict["capacitron_vae_beta_loss"].backward() | |
| optimizer.first_step() | |
| loss_dict["loss"].backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |
| class SCGSTMultiSpeakeTacotronTrainTest(unittest.TestCase): | |
| def test_train_step(): | |
| config = config_global.copy() | |
| config.use_d_vector_file = True | |
| config.use_gst = True | |
| config.gst = GSTConfig() | |
| input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) | |
| input_lengths = torch.randint(100, 129, (8,)).long().to(device) | |
| input_lengths[-1] = 128 | |
| mel_spec = torch.rand(8, 30, config.audio["num_mels"]).to(device) | |
| linear_spec = torch.rand(8, 30, config.audio["fft_size"] // 2 + 1).to(device) | |
| mel_lengths = torch.randint(20, 30, (8,)).long().to(device) | |
| mel_lengths[-1] = mel_spec.size(1) | |
| stop_targets = torch.zeros(8, 30, 1).float().to(device) | |
| speaker_embeddings = torch.rand(8, 55).to(device) | |
| for idx in mel_lengths: | |
| stop_targets[:, int(idx.item()) :, 0] = 1.0 | |
| stop_targets = stop_targets.view(input_dummy.shape[0], stop_targets.size(1) // config.r, -1) | |
| stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() | |
| criterion = L1LossMasked(seq_len_norm=False).to(device) | |
| criterion_st = nn.BCEWithLogitsLoss().to(device) | |
| config.d_vector_dim = 55 | |
| model = Tacotron(config).to(device) # FIXME: missing num_speakers parameter to Tacotron ctor | |
| model.train() | |
| print(" > Num parameters for Tacotron model:%s" % (count_parameters(model))) | |
| model_ref = copy.deepcopy(model) | |
| count = 0 | |
| for param, param_ref in zip(model.parameters(), model_ref.parameters()): | |
| assert (param - param_ref).sum() == 0, param | |
| count += 1 | |
| optimizer = optim.Adam(model.parameters(), lr=config.lr) | |
| for _ in range(5): | |
| outputs = model.forward( | |
| input_dummy, input_lengths, mel_spec, mel_lengths, aux_input={"d_vectors": speaker_embeddings} | |
| ) | |
| optimizer.zero_grad() | |
| loss = criterion(outputs["decoder_outputs"], mel_spec, mel_lengths) | |
| stop_loss = criterion_st(outputs["stop_tokens"], stop_targets) | |
| loss = loss + criterion(outputs["model_outputs"], linear_spec, mel_lengths) + stop_loss | |
| loss.backward() | |
| optimizer.step() | |
| # check parameter changes | |
| count = 0 | |
| for name_param, param_ref in zip(model.named_parameters(), model_ref.parameters()): | |
| # ignore pre-higway layer since it works conditional | |
| # if count not in [145, 59]: | |
| name, param = name_param | |
| if name == "gst_layer.encoder.recurrence.weight_hh_l0": | |
| continue | |
| assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( | |
| count, param.shape, param, param_ref | |
| ) | |
| count += 1 | |